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The big data revolution has
transformed the landscape of im-
munology research. As inaugural
students of Stanford’s new Com-
putational and Systems Immunol-
ogy PhD track, we share our
experiences and advice with other
institutions considering a similar
program.

An Evolving Field of Immunology
Technological revolution in immunology is
producing ever-increasing amounts of
data [1]. Translating these data into insights
requires advanced statistics, data mining,
and machine learning skills. It also requires
a strong background in immunology to
ask suitable questions, design appropriate
experiments, and recognize discoveries in
data trends. The paucity of researchers
with a combination of these skills has cre-
ated a bottleneck in systems-level immunol-
ogy research. Training a new generation of
computational immunologists will provide
opportunities for discoveries that simply
have not been possible with traditional
approaches [2,3].

As immunology PhD students at Stanford
University, we praise our faculty for antici-
pating this need and establishing a
Computational and Systems Immunology
(CSI) track within the PhD Program in
Immunology in 2012. Initiated by Mark
Davis and Atul Butte (the latter now at Uni-
versity of California, San Francisco), the
CSI track runs in parallel with the Molecu-
lar, Cellular, and Translational Immunology
(MCTI) track. To our knowledge, Stanford
University remains the only academic insti-
tution to offer a formal graduate program
in computational immunology.

As CSI students, we are grateful for the
skills we received and the opportunities
that this training has opened. Here, we de-
scribe our program and enthusiastically
recommend that other institutions offer a
similar opportunity to their trainees. In col-
laboration with the CSI faculty and Immu-
nology leadership, we further provide
recommendations on creating and contin-
uously refining a successful computational
immunology program.

The Need for a Computational
Immunology Program
As novel multiplexed technologies acceler-
ate high-throughput interrogation of im-
mune phenomena, these data accumulate
in large public repositories, such as the
NCBI Gene Expression Omnibus, NIAID-
funded ImmPort, and ImmGen. An increas-
ing number of studies are utilizing data from
these repositories to identify hitherto
unknown immunology [4–6]. A broad spec-
trum of problems that require computa-
tional immunology skills include immune
repertoire analysis [7,8], structural basis of
antigen recognition [9,10], single-cell differ-
entiation trajectory construction [11,12],
novel cell subset detection [13], simulation
of immune processes [14], and clinical out-
come prediction [4–6,15]. Thus, the field
needs computational immunologists who
are able to integrate their understanding of
technology platforms and databases with
expertise in immunology and data analysis.

Currently, computationally savvy immunol-
ogists are often self-taught, making it easy
to cultivate bad habits and be swayed by a
‘method of the week’. Collaborations with
bioinformaticians are important, but with-
out an expert with hybrid training, there
can be delays, mix-ups, and failures to
recognize data inconsistencies or unantic-
ipated discoveries. Thus, immunology
trainees would benefit from a structured
curriculum designed to master computa-
tional immunology problems.

Learning Objectives in Stanford’s
CSI Track
The Stanford PhD program in Immunology
offers two tracks: MCTI and CSI. Our CSI
program accommodates incoming stu-
dents skilled in either immunology or pro-
gramming and provides an opportunity to
cover the remaining material in year 1
(Figure 1A). In the first year, students in
both MCTI and CSI tracks rotate in re-
search laboratories and take many of the
same courses. In addition to traditional
MCTI course work that builds expertise in
immunology (with a reduction of one core
course and one MCTI elective), CSI stu-
dents obtain computational skills through
courses in computer science, statistics,
and bioinformatics. As we do not select a
track until the end of the first year, unde-
cided students are able to try CSI courses
and a computational rotation without
committing to the track. In the second
year, all students define a thesis project,
take a qualifying exam, and serve as
teaching assistants. CSI students also
complete the remaining core courses,
including a newly designed series focused
specifically on computational immunology
problems (Figure 1B). The series
consists of seminars and courses focused
on understanding, practicing, and
solving problems specific to computa-
tional immunology (https://med.stanford.
edu/immunol/phd-program/resources/
curriculum.html). After building a strong
foundation through coursework and
defining a thesis project, CSI students
take two electives in years 3+ to refine
project-specific skills, which typically
include courses in advanced statistics, bio-
informatics, or machine learning.
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Computational and systems immunology curriculum
Immunology core

CSI Core

Foundations in experimental biology (6)
Molecular and cellular immunology literature review (1)

Advanced immunology I (3)
Advanced immunology II (3)

  Electives

Teaching in immunology (2 courses)

The responsible conduct of research (1)
Introduction to probability for computer scientists (5)
Design and analysis of algorithms (5)

Introduction to applied comp. Tools in immunology (2)

Essential methods in computational and systems immunology (3)
Advanced computational and systems immunology (3)

Biostatistics (5)

Introduction to biomedical informatics research methodology (3)
Representations and algorithms for computational molecular biology (4)

Programming methodology (5)
Programming abstractions - accelerated (5)

Chemistry of biological processes (3)
Molecular and cellular immunology (4)

Prerequisites
(or year 1)

Year 1

Year 2

Years 3–5

Teaching

CS and statistics core

Committee
meetings

- Advanced statistics
- Machine learning
- Bioinformatics

- Statistical learning
- R programming

Emphasis
Research

experience

Rotations

Thesis
research

Qualifying
exam

Thesis defense

Immunology journal club (1)
Seminar in immunology (1) Seminar in computational and systems immunology (1)

Specialized computational and systems immunology courses

Essential methods in computational and systems immunology
immunology datasets. Includes assignments on data analysis.
To provide students with practice working on published computational 

To introduce students to diverse problems, technologies, and tools 
specific to computational immunology. Includes a grant proposal.

Introduction to applied computational tools in immunology

GoalCredits
2

3

Course

Advanced computational and systems immunology
computational immunology project. Includes preparing a manuscript.
To enable students to develop novel tools and algorithms for their3

Seminar in computational and systems immunology
and leading scientists. Includes dinner discussions with each speaker.
To expose students to ongoing computational immunology research 1

(A)

(B)

(C) Critical components of success
Community

Seminar series (Immunology, CSI)

Social events (with faculty, postdocs, staff)
Journal clubs (student-led)

Outreach events (with industry, startups, schools)

Continuous dialog among faculty and students
Curriculum evolution

Tailor coursework to student’s project needs
Subcommittee on curriculum for the track
Town hall meetings

Mentorship
Student quarterly advising dinners

Faculty mentor guidance
Program and administrative support

Student 1x1 mentor program

TrendsTrends inin ImmunologyImmunology

Figure 1. Stanford’s Computational and Systems Immunology (CSI) Curriculum and Critical Components. (A) CSI track timeline, research emphasis, and
coursework, as of 2018–2019. The number of credits for each course are shown in parentheses. This curriculum has evolved since 2012 and may be developed
further (see Curriculum Evolution). (B) Specialized CSI courses. Full descriptions are available on https://med.stanford.edu/immunol/phd-program/resources/
curriculum.html. (C) Critical components that have enabled the success of the CSI track at Stanford University. Ab

Trends in Immunology
Since 2012, 11 of 57 students began this
training, and three (J.G., M.H.G., and
Z.G.) have graduated. At this time, the
CSI track takes 4–5 years (mean 4.6
years); comparable, or perhaps slightly
less than a graduation mean of 5.7 years
for the Stanford Immunology PhD pro-
gram. In addition, students focusing on
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computational immunology prior to the
formation of the CSI track also graduated
in 4–6 years. These limited data suggest
that students in both MCTI and CSI tracks
graduate in a similar timeframe despite the
intensive CSI coursework. Finally, compu-
tational immunology training has resulted
in innovative published work [7–10,12,15].
Recommendations to Future
Computational Immunology
Programs
Based on Stanford’s program, in this Sci-
entific Life article, we advise other institu-
tions to foster a culture of continuous
learning through coursework (if not already
incorporated). Specifically, creating a

breviations: CS, computer science.
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formal computational immunology pro-
gram enables students to take a heavy
course load without taking time away
from research. We posit that the time
invested in immunology, computer sci-
ence, and CSI courses has so far yielded
a high return by accelerating thesis re-
search. Other interdisciplinary PhD pro-
grams (e.g., biomedical informatics) have
also shown that combining coursework
requirements across multiple subject
areas is certainly feasible.

Next, we recommend developing a rigor-
ous core curriculum. The core course
work should emphasize advanced immu-
nology, statistics, computer science, and
dynamic modeling. A set of dedicated
courses should then cover specialized
problems, data formats, and methodolo-
gies specific to computational immunology
(e.g., CSI core; Figure 1B). Flexible elec-
tives can maximize the relevance of
coursework to student theses. Thus, in ad-
dition to fostering support for students tak-
ing courses, developing an effective track
requires faculty to dedicate time to devel-
oping and teaching these new courses.

To reduce the burden on existing faculty
and to provide sufficient guidance to stu-
dents, institutions should be encouraged
to recruit additional faculty and postdocs
working in computational immunology.
Another possibility is a joint mentorship of
a given student by both experimental and
computational faculty members. For ex-
ample, of the immunology students who
started their PhD program between 2012
and 2017, 8/11 (73%) CSI students were
coadvised, in contrast to 7/46 (15%)
MCTI students. Although co-mentorship
offers numerous benefits to a student
(advisor support, access to laboratory ex-
pertise and resources, and more indepen-
dence), arguably it has some drawbacks
(twice the laboratory-related activities,
and potentially conflicting expectations
from coadvisors). Thus, although co-
mentoring can be beneficial, a decision
as to whether a student should be co-
mentored needs to be carefully consid-
ered on a case-by-case basis.

A successful program relies on the self-
motivation of graduate students, but also
requires providing access to advising, as
needed (Figure 1C). Program advisors
might potentially tailor an individual stu-
dent’s curriculum to ensure that incoming
PhD students are challenged at just the
right level, learn skills directly applicable
to their work, and hence, be able to grad-
uate in a reasonable time. Finally, a contin-
uous two-way dialog between students
and faculty is key to ensuring collaborative
and continuous improvements in the cur-
riculum and training.
Building a Computational
Immunology Community
Aside from the course work, building a sci-
entific community within Stanford’s CSI
track was a key to its early success
(Figure 1C). In the program, senior stu-
dents advise junior students through for-
mal quarterly advising dinners, one-on-
one mentoring programs, and informally.
Community support ensures that nobody
‘falls through the cracks’, and individual
stories help break the ‘it’s too late for me
to learn how to code’ barrier. Postdocs,
faculty, and administrators set norms, ad-
vise students, and provide the necessary
resources and support. Through CSI sem-
inars, students learn about the emerging
computational immunology concepts and
obtain career advice during informal dinner
discussions with each speaker.
Concluding Remarks
Within the past decade, big (voluminous),
deep (high-dimensional), and multiomics
data have become commonplace in im-
munology and other areas of biomedical
research, such as neuroscience, cancer
biology, and developmental biology. As a
new generation of scientists, we are ex-
pected to build and utilize these resources
to pose and answer outstanding ques-
tions in immunology. We are thus grateful
to programs such as Stanford’s new CSI
track, preparing us for the future. We
strongly encourage other immunology
graduate programs to offer a similar option
to their students. The concepts presented
here may be applicable to designing ex-
tended education programs for clinical fel-
lows, postdocs, and other trainees.
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Glossary
Amphioxus ProtoRAG transposase: each
transposon genome encodes its own enzyme
(transposase), which cuts the transposon DNA out of
the DNA in which it was integrated, and then inserts it
somewhere else. The amphioxus (lancelot) ProtoRAG
transposase appears to be the forerunner of the RAG
enzyme in all jawed vertebrates.
Artemis:DNA-PKcs: hairpin opening at the V, D, or
J coding ends is achieved by the structure-specific
endonuclease Artemis, activated by the kinase
DNA-PKcs. The kinase activity of DNA-PKcs is
activated when it binds to a DNA end, including
DNA hairpinned ends. Artemis and DNA-PKcs
form a tight protein complex. Artemis and DNA-
PKcs appear on the evolutionary stage roughly at
the invertebrate to vertebrate transition,
suggesting that efficient hairpin opening might
have been a key selective advantage towards
generating a diverse immune repertoire.
Junctional diversity: diversity in the immune system
in vertebrates consists of two facets: combinatorial
diversity due to the rearrangement of different V, D,
and J segments with one another; and junctional
diversity due to base-pair addition and removal,
intrinsic to the NHEJ process.
Recombination signal sequence (RSS): DNA
sequence at which a RAG enzyme binds (RAG1 or
RAG2). It consists of two parts: a palindromic heptamer
and an AT-rich nonamer, separated by either a 12- or
23-bp spacer. One V(D)J recombination reaction
requires one RSS with a 12- and another with a 23-bp
spacer, also known as the 12/23 rule.

to be key in supporting this critical
change in vertebrate advancement.

RAG endonuclease complexes in verte-
brates cut into the antigen receptor
genomic locus at variable domain
(see Glossary) segments. These cuts
lead to the formation of the variable
domain exon that encodes the variable
domain binding pocket of antibodies.
This assembly requires cutting the
DNA at the edges of the variable (V),
diversity (D), and joining (J) gene segments
in a manner directed by heptamer–
nonamer nucleotide recombination
signal sequences (RSSs), bearing
either a 12- or 23-bp spacer [1]. This
endonuclease action is identical to the
direct transesterification chemistry by
which the transposases of all transpo-
sons function (Figure 1).

However, the choreography of the DNA
ends varies significantly for the RAG reac-
tion in vertebrates relative to transposons,
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Variable domain: portion of the heavy or light chain
of an antibody (or either chain of the T cell receptor)
that forms the binding pocket allowing it to bind to an
antigen (or a peptide–MHC complex in the case of T
cell receptors). The variable domain does not exist as
such in the genome, but rather must be assembled
from V, D, and J segments (heavy chain) or V and J
segments (light chain). The assembly occurs via RAG
endonuclease double-strand break formation at RSS
sites (see main text) adjacent to the V, D, and J
segments. The joining of the DNA ends requires
opening of the RAG-generated coding end hairpins
by the Artemis:DNA-PKcs complex and then joining
by the NHEJ double-strand break repair pathway.

Spotlight

Transposons to V(D)J
Recombination:
Evolution of the
RAG Reaction
Michael R. Lieber1,*

Evolutionarily, howRAG endonucle-
ases in vertebrate immune systems
could shed dangerous transposon-
like propensities, and instead, sup-
port the organized assembly of
antigen receptor variable domains,
has been unclear. Recent structural
work by Schatz and colleagues
(Nature, 2019) identifies features of
the RAG endonuclease deemed

which is why antigen receptor gene rear-
rangement superficially appears to be so
different from a transposon excising from
one genomic location and integrating into
a new DNA location. For antigen receptor
gene rearrangement in vertebrate B and
T cells, RAG cutting had to change in
fundamental ways.

First, the V, D, and J coding segment DNA
ends could no longer be repaired by an
assortment of pathways, as donor ends
are handled when prokaryotic and eukary-
otic transposons move from one location
to another [2,3] (Figure 1). Instead, in the
vertebrate immune system, the DNA
ends of these V, D, and J segments must
be generated and repaired in a consistent
manner (with a terminal DNA hairpin),
which is then processed by the nonhomol-
ogous DNA end joining (NHEJ) repair path-
way, yielding what is called junctional
diversity [4]. The strategy of junctional
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