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Spatial biology provides unprecedented characterization of 
tissue architectures through technological advances in mul-
tiplexed in situ imaging platforms1–6. Using these platforms, 

specific tissue architectures have been associated with tissue devel-
opment and disease progression to improve treatment response7–10. 
For in situ image analysis, pixel-based data are often segmented 
into individual cells whose cell type needs to be identified. Current 
cell type identification methods typically involve manual gating or 
clustering. Manual gating is subjective, and unmanageable with 
high-dimensional data11,12. Clustering cells with similar marker 
expressions can be biased by numerous factors including the choice 
of the number of clusters. Even after clustering, a cluster’s cell type 
assignment can be subjective, particularly for clusters that are mix-
tures of cell types13. Hence, even clustering requires manual assess-
ment, preferably by an expert pathologist. Given their subjective 
nature, use of clustering and manual assessment for cell type identi-
fication cannot be robustly evaluated.

To address the limitations, we developed an unsupervised 
machine learning cell type identification method called CELESTA 
(CELl typE identification with SpaTiAl information), which does 
not involve manual gating or clustering and instead leverages the 
marker expressions and spatial information of cells with minimal 
user dependence. CELESTA is a robust and fast (on the order of 
minutes) algorithm for cell type identification that assigns individ-
ual cells to their most probable cell types through an optimization 
framework leveraging prior knowledge in a transparent manner.

We demonstrate CELESTA’s performance on data generated 
using the CODEX (CO-Detection by indEXing) platform14,15. 
CODEX is an immunofluorescence-based imaging technology that 
can quantify more than 50 proteins, across tens of thousands of 
cells in a tissue slice. To evaluate CELESTA’s performance against 
extant methods, we applied CELESTA to a published CODEX 
dataset generated on colorectal cancer samples for which cell type 
identification was based on clustering and manual assessment by a 
pathologist, and which we adopted as the gold standard6. CELESTA 
provides cell type assignments comparable to the gold standard, in a 
manner that can be robustly evaluated.

We applied CELESTA to identify tissue architectures associ-
ated with lymph node metastasis in head and neck squamous cell 
carcinoma (HNSCC) using CODEX images from primary samples 
associated with (N+) and without (N0) lymph node metastasis. We 
identified cell types that are co-localized more extensively in N+ 
than in N0 HSNCC, and validated our findings using tissue micro-
array (TMA) analysis from an independent cohort. By coupling our 
spatial analysis with single-cell RNA-sequencing (scRNA-seq) data 
on proximal sections of the imaged specimens, we identified cell–
cell crosstalk associated with node status, demonstrating the power 
of CELESTA to facilitate biological discovery.

Results
Overview of CELESTA. A typical image analysis pipeline often 
starts with segmenting pixel-based images into cells followed by 
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cell type identification and spatial analysis (Fig. 1a). CELESTA first 
assigns cell types to cells whose marker expressions match prior 
knowledge of cell type marker expressions; these cells are defined 
as ‘anchor cells’. Remaining cells, whose marker expressions do not 
clearly associate with a cell type, are referred to as ‘non-anchor cells’. 

For each non-anchor cell, CELESTA uses the cell’s neighboring cell 
type information, in addition to the cell’s marker expressions, to 
identify the cell type. Because cells are organized in coherent spa-
tial patterns, we reason that spatial location is valuable information 
in additional to marker expressions to infer cell type. To test this 
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Fig. 1 | Image analysis pipeline with CELESTA. a, Typical analysis pipeline for multiplexed in situ image data. b, Schematic diagram illustrating the iterative 
process in CeLeSTA’s cell type assignment. c, In CeLeSTA’s cell type assignment, the cell types are assigned to an image tile in which each dot represents a 
single cell and is positioned on the cell’s centroid.

Fig. 2 | overview of CELESTA. a, CeLeSTA flowchart. b, CeLeSTA’s inputs and preprocessing steps. c, Illustration of CeLeSTA’s marker-scoring function. 
d, Illustration of CeLeSTA’s spatial-scoring function, using spatial neighborhood information for each non-anchor cell i. The cell type information from the 
spatially nearest neighboring cells of cell i is derived using the energy function of the Potts model. e, each non-anchor cell Ci is associated with an unknown 
state Si, which is the cell type to be inferred. Cells are represented as nodes in an undirected graph with edges connecting N nearest spatial neighbors. The 
joint distribution of S is assumed to satisfy a discrete Markov random field. f, Illustration of the cell type resolution strategy used by CeLeSTA, based on 
the HNSCC imaging panel markers (in parentheses). cDC, conventional dendritic cell; CK, cytokeratin; MRF, Markov random field; NK, natural killer; pDC, 
plasmacytoid dendritic cell. Beta used in the flowchart (a) is a vector of model parameters.
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assumption, we performed cell neighborhood enrichment analysis 
using a published permutation strategy16 on the annotations of a 
public CODEX dataset6 and demonstrate that cells with the same or 

similar cell types are enriched among each other’s nearest neighbors 
(Extended Data Fig. 1a). CELESTA uses an iterative optimization 
framework to assign cell types for non-anchor cells (Fig. 1b,c).
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CELESTA (Fig. 2a) requires two main inputs. The first input is 
an image segmented into individual cells. Each cell is defined by 
its marker expressions and spatial location (Fig. 2b). CELESTA 
determines whether a marker is over- or under-expressed in a given 
cell by fitting a two-mode Gaussian mixture model to the marker 
expression distribution (Extended Data Fig. 1b) derived from the 
cells in a sample17. CELESTA converts marker expression into a 
probability using a sigmoid function, in which the expression levels 
are scaled between 0 and 1 and the midpoint is the intersection of 
two-mode Gaussian distributions.

The second input to CELESTA is a cell type signature matrix 
that relies on prior knowledge of markers known to have high or 
low expression in specific cell types. For each marker the cell type 
signature matrix is initialized as 1 or 0 if the marker has high or 
low, respectively, probability of expression, for a given cell type (see 
Supplementary Table 1 for an example). A marker is denoted as ‘NA’ 
if it is considered irrelevant for cell type identification. The cell type 
signature matrix is updated as more cells are assigned (see Extended 
Data Fig. 1c for an example of a final cell type signature matrix).

For the initial cell type assignment, CELESTA matches a cell’s 
marker expression probability profile to the cell type signatures 
using a marker-scoring function (Fig. 2c). When a cell has one 
dominant cell type score, CELESTA assigns the corresponding cell 
type to that cell and defines it as an ‘anchor cell’. For a cell whose 
cell type cannot be identified using marker expressions alone 
(‘non-anchor cell’), CELESTA leverages cell type information from 
its N nearest spatial neighbors (Fig. 2d) using a spatial-scoring func-
tion that utilizes the Potts model energy function. The Potts model 
has been used for image segmentation18–20, as a clustering method 
on spatial transcriptomics data21 and for the analysis of pathological 
images22. Using both the spatial-scoring and marker-scoring func-
tion, CELESTA represents each non-anchor cell as a node in an 
undirected graph with edges connecting to its N nearest neighbors. 
CELESTA associates each node with a hidden state, which is the 
cell type to be inferred, and assumes that the joint distribution of 
the hidden states satisfies a discrete Markov random field (Fig. 2e).  
To maximize the joint probability function, CELESTA uses a 
pseudo-expectation–maximization algorithm (an expectation–
maximization-like algorithm) with a mean field approximation23. In 
each iteration, if the thresholds are met, cell types with maximum 

probabilities are assigned to the non-anchor cells. If the marker 
expressions and the spatial information still do not pass the thresh-
old for a cell type assignment, CELESTA re-evaluates the cell on the 
next iteration as additional neighboring cells have been assigned. 
The process is repeated until a user-defined convergence threshold 
is met, whereupon unassigned cells are labeled as ‘unknown’.

Incorporation of cell lineage. CELESTA introduces a cell type 
resolution strategy whereby cell type assignment is performed in 
multiple rounds, in which cell type resolution is increased in each 
round based on known cell lineages (Fig. 2f). This strategy reduces 
computational complexity and improves robustness when cell types 
from different lineages share marker expressions. The pseudocode 
for CELESTA is provided in Supplementary Note 1.

Performance of CELESTA. We assessed the performance of 
CELESTA on a public CODEX dataset generated from a colorectal 
cancer TMA6. In this dataset, the cell type assignments, which we 
regard as our benchmark, were based on clustering24 and manual 
assessment by a pathologist using marker expressions and cell mor-
phology features from hematoxylin–eosin images. CELESTA assign-
ments were comparable to this benchmark (Fig. 3a). The number 
of cells for each cell type was highly correlated between CELESTA 
and benchmarked annotations (Fig. 3b,c). Using the benchmarked 
annotations as ground truth, CELESTA achieved average accuracy 
scores (Rand index) of around 0.9, average precisions between 0.6 
and 0.8, and F1 scores between 0.6 and 0.7 across the major cell types  
(Fig. 3d). For rare populations, CELESTA achieved average precision 
and F1 scores between 0.4 and 0.6. Noteworthy, there are two clus-
ters assigned as cell type mixtures in the benchmarked annotations 
(Fig. 3e,f); for the cells in these two clusters, CELESTA-assigned cell 
types were consistent with canonical marker expression patterns.

To evaluate the mismatched assignments, we built a confusion 
matrix comparing the cell types between CELESTA and bench-
marked assignments (Extended Data Fig. 2). Although there is high 
agreement between CELESTA and the benchmark annotations for 
most cell types, we found that tumor cells assigned in the bench-
marked annotations but not by CELESTA expressed low to no cyto-
keratin, which is the tumor-specific marker defined in CELESTA’s 
cell type signature matrix. CELESTA assigned the majority (around 

Fig. 3 | CELESTA applied to a published CodEX dataset generated from a TMA of colorectal cancer primary samples (Schürch et al.6). a, Representative 
TMA core with seven-channel overlay CODeX image (left), image using CeLeSTA-assigned cell types (middle) and image using annotated cell types from 
Schürch et al.6 (right). Scale bar, 50 μm. b, Cell type composition from CeLeSTA-assigned cell types versus annotations from Schürch et al.6, across the 70 
cores of the entire TMA. c, Correlations between the number of cells identified, per TMA core across 70 cores, between the CeLeSTA and Schürch et al.6 
annotations, for each cell type. The red line indicates a perfect correlation (slope = 1) and the blue line is the linear fit between the CeLeSTA-identified cell 
types and the Schürch et al.6 annotations. R represents the Pearson correlation coefficient. d, Precision score, F1 score and accuracy (Rand index) score 
for the major cell types identified by CeLeSTA using the Schürch et al.6 annotations as the ground truth. error bars are calculated using s.d. across all of 
the cores (n = 70) as independent samples; the center of the error bars indicates the mean. A cell type is defined as rare if it has, on average, fewer than 
100 cells per core. e,f, CeLeSTA cell type assignments for a cluster that Schürch et al.6 annotated as a mixture of vasculature or immune cells (e) and as a 
mixture of tumor or immune cells (f). CeLeSTA cell type compositions are shown in the left panels and the average canonical marker expressions for each 
cell type in the cluster are shown in the right panels. aSMA, alpha-smooth muscle actin.

Fig. 4 | CELESTA applied to CodEX data generated from fresh-frozen hNSCC primary tumor samples. a,b, CODeX image overlay (left) and CeLeSTA 
(right) for a primary tumor HNSCC sample associated with lymph node metastasis (N+) (a) and not associated with lymph node metastasis (N0) (b). 
Scale bars: main image and Hoechst stain, 200 μm; inset, 100 μm. c, Cell type compositions from scRNA-seq data (left) and CeLeSTA-inferred cell types 
on CODeX data (middle), by HNSCC patient sample. Paired scRNA-seq and CODeX data were generated on proximal tissue sections from four patient 
samples. The graph on the right shows the correlation (Pearson correlation test) between CeLeSTA-inferred cell compositions and scRNA-seq cell 
compositions on the same four samples. d, Adjusted Rand index (ARI) to assess the performance of CeLeSTA against manual gating for each HNSCC 
sample. error bars indicate the s.d. calculated based on 50 runs of random sampling, and the center of the error bars indicates the mean. e, Correlation 
(Pearson correlation test) between CeLeSTA-inferred cell compositions and manual gating compositions. f, Cell type precision score, F1 score and 
accuracy score (Rand index), across six independent samples, for six cell types. error bars are calculated using s.d., and the center of the error bars 
indicates the mean. CK, cytokeratin; NK, natural killer.
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80%) of these cells to the unknown category (Extended Data  
Fig. 2). It is possible that cell morphology from the hematoxy-
lin–eosin images was used to identify low-cytokeratin-expressing 
malignant cells in the benchmark dataset. Although the bench-
marked annotations included morphological features, CELESTA 
does not use morphology in its current implementation.

We evaluated the robustness of CELESTA’s performance on 
the benchmark dataset. We tested the cell type signature matrix 
with a leave-one-out strategy to demonstrate that CELESTA has 
a low rate of misclassification (Extended Data Fig. 3). We tested 
the cell type resolution strategy, and performed sensitivity tests 
against user-defined parameters (Extended Data Figs. 3,4 and 
Supplementary Note 2).

Comparison of CELESTA to clustering methods. We compared 
CELESTA with two clustering methods, namely FlowSOM25 and 
flowMeans26, which are commonly used on mass cytometry data27. 
For each clustering method we varied the number of clusters (20, 30 
and 50) and had two independent annotators manually assign clus-
ter cell types (Extended Data Fig. 5). Between the two annotators, 
around 60% of the clusters had matched annotations. Compared 
with CELESTA, both annotators labeled more cells as ‘unknown’ 
cell type, and CELESTA had better F1 scores, especially for the rare 
populations (Supplementary Note 3).

CELESTA applied to primary HNSCC tumors imaged by 
CODEX. We generated a cohort of eight primary HNSCC tumors 
with four node-positive (N+) and four node-negative (N0) sam-
ples (Supplementary Table 2). We performed CODEX imaging 
using 52 markers (Supplementary Table 3) and assigned cell types 
with CELESTA (Supplementary Table 4). We manually assessed 
CELESTA’s performance by mapping assigned cell types onto the 
original images using canonical marker staining. We showed quali-
tatively that the CELESTA-assigned cell types matched well with 
marker staining (Fig. 4a,b and Extended Data Figs. 6,7). We evalu-
ated cell type composition from CELESTA with paired scRNA-seq 
data derived on proximal tissue sections, for four samples. Although 
CELESTA cell type compositions were correlated with scRNA-seq 
compositions (Fig. 4c), differences may arise because tissue dis-
sociation28 in scRNA-seq data could cause immune cells to be 
over-enriched.

We applied manual gating as a benchmark to quantitatively 
evaluate CELESTA’s performance. We designed a gating strategy 
focusing on cell types relevant for downstream analysis (Extended 
Data Fig. 8). Compared with gating, CELESTA achieved an adjusted 

Rand index of between 0.6 and 0.9 (Fig. 4d). Due to imaging arti-
facts and lower tissue quality, cell type identification was more diffi-
cult in some samples. In terms of cell type compositions, CELESTA 
and gating were highly correlated (Fig. 4e). CELESTA achieved 
average F1 scores of around 0.7 and accuracy scores of around 0.9 
for malignant, endothelial and T cells (Fig. 4f). For T cell subtypes, 
CELESTA achieved average F1 scores of around 0.55 (Fig. 4f).

Spatial biology enabled by CELESTA. We performed spatial analy-
sis on our HSNCC cohort using CELESTA-identified cell types. We 
adapted the co-location quotient29 used in geospatial statistics to 
quantify spatial co-localization between pairs of cell types, and tested 
whether there were differential pairwise cell type co-localization 
patterns in N+ versus N0 HNSCC (Fig. 5a). We identified four pairs 
of cell types that were significantly more co-localized in N+ than in 
N0 HNSCC on two-sided Student’s t-test (Fig. 5b), namely malig-
nant cells and T-regulatory cells (Tregs) (P = 0.038), CD4+ T cells 
and endothelial cells (P = 0.027), CD8+ T cells and CD4+ T cells 
(P = 0.049), and CD4+ T cells with themselves (P = 0.014) (Fig. 5c). 
Representative CODEX images show that FOXP3 (a Treg marker) 
is more co-localized with cytokeratin (tumor marker) staining, and 
that CD4 and CD8 (T cell markers) are more co-localized with CD31 
(endothelial marker) staining, in N+ than in N0 HNSCC (Fig. 5d,e). 
To validate the hypothesis of co-localization of Tregs and malignant 
cells in N+ HNSCC, we stained FOXP3 and cytokeratin on a TMA 
from an independent HNSCC cohort. Representative TMA images 
show a stronger co-localization of malignant cells and Tregs in N+ 
than in N0 samples (Fig. 5f), and N+ HNSCCs have significantly 
higher density correlations between cytokeratin and FOXP3 than 
N0 HNSCCs (P = 0.011, two-sided Student’s t-test) (Fig. 5g).

Spatially guided scRNA-seq analysis. Because crosstalk between 
cells may be associated with physical proximity30,31, we sought 
co-localization patterns to guide the discovery of cell–cell cross-
talk associated with node status. We leveraged HNSCC scRNA-seq 
data generated on specimens proximal to the imaged specimens 
(Fig. 6a) and analyzed using Seurat32,33. We identified a malignant 
cluster (Cluster 11) in which CXCL10, a chemokine ligand, was 
more expressed on N+ than on N0 HNSCC (Fig. 6b,c). We identi-
fied a Treg-enriched cluster (Cluster2) based on FOXP3 expression 
(Extended Data Fig. 9), in which CXCR3, a receptor of CXCL10, was 
more expressed on N+ than on N0 HNSCC (Fig. 6c). We reasoned 
that CXCL10–CXCR3 crosstalk between malignant cells and Tregs 
mediated N+ HNSCC. Evidence for this interaction was found in 
a public scRNA-seq HNSCC dataset34 (Extended Data Fig. 9). In a 

Fig. 6 | scRNA-seq analysis guided by spatial biology reveals cell–cell interactions unique to primary hNSCC associated with lymph node metastasis.  
a, UMAP (Uniform Manifold Approximation and Projection; an algorithm for dimension reduction) of identified cell type clusters using HNSCC scRNA-seq 
data. b, UMAP of malignant cells (cluster 11) by node status (left) and CXCL10 expression (right). c,d, Violin plots showing the differential expression 
of CXCL10 and CXCR3 in malignant and Treg cell clusters (c) and CCL20 in an endothelial cell cluster and CCR6 in a CD4+ T cell cluster (d) between 
N+ (n = 2) and N0 (n = 2) samples. Differentially expressed genes were identified using SAMR (Significance Analysis of Microarrays in R) and the false 
discovery rate was used to adjust the P values. Violin plots show density distributions of the data. Center line of the box defines median. The white box 
in the center of the violin defines the interquartile range. The black line stretched above from the box defines 1.5 times interquartile range above the 75th 
percentile, and the black line stretched below from the box defines 1.5 times interquartile range below the 25th percentile. e, Graphical illustration showing 
the cell–cell crosstalk with identified chemokine ligand–receptor pairs mediating the cellular spatial co-localization in N+ samples. Created with BioRender.
com. f, CXCL10 expression is significantly higher (two-sided non-parametric Wilcoxon test) in the sixth generation of a lymph node tumor cell line (LN6) 
in a mouse model (n = 5) than in the parental (n = 3) tumor cell lines (P = 0.036). TPM, Transcripts Per Kilobase Million. g, Transwell experiment showing 
that LN6 tumor cells attract more CXCR3+ Tregs through the membrane than parental tumor cell lines (paired t-test right-tailed, P = 0.05). Tregs were 
plated in the upper chambers; the bottom chambers were plated with either the parental cells (control group, n = 3) or LN6 cells (study group, n = 3).  
h, Schematic diagram of the in vivo experiments. Created with BioRender.com. i, LN6 (n = 4) tumors recruit more Tregs than parental (n = 4) tumors 
(paired t-test right-tailed, P = 0.034). j, AMG487 treatment significantly reduces the number of Tregs recruited into the LN6 tumors (two-sided 
non-parametric Wilcoxon test, P = 0.029). Untreated samples, n = 8, and treated samples, n = 7. The center line of the box plot defines the median, the top 
whisker indicates the largest value within 1.5-fold the interquartile range from the 75th percentile, the bottom whisker indicates the smallest value within 
1.5-fold the interquartile range below the 25th percentile, and the upper and lower bounds of the box indicate the 75th and 25th percentiles, respectively. 
*adjusted P < 0.05, **adjusted P < 0.01, ***adjusted P < 0.005, ****adjusted P < 0.001.
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similar manner, we found that CCL20–CCR6 crosstalk is higher in 
N+ than in N0 HNSCC, and may mediate crosstalk between endo-
thelial and CD4+ T cells in N+ HNSCC (Fig. 6d). Hence, following 
CELESTA, spatial patterns guiding scRNA-seq analysis can identify 
potential mediators of node status (Fig. 6e).

Functional validation of CXCL10–CXCR3 crosstalk. To validate 
the association of CXCL10–CXCR3 crosstalk between malignant 
cells and Tregs with node status, we leveraged a murine model of 
lymph node metastasis35 developed for melanoma. In this model, 
we created multiple generations of lymph node metastatic cell lines 
(LN1–LN6), with each generation exhibiting increased frequency of 
lymph node metastases. RNA sequencing showed that later genera-
tions (LN6) expressed significantly higher CXCL10 than the paren-
tal line (P = 0.036, Wilcoxon signed-rank test) (Fig. 6f).

We tested the hypothesis that CXCR3+ Tregs are more attracted 
to CXCL10+ malignant cells in a transwell experiment in which we 
found that LN6 cells induced more migration of CXCR3+ Tregs 
than parental cells (Fig. 6g and Extended Data Fig. 10). This finding 
supports the hypothesis that CXCR3–CXCL10 crosstalk promotes 
Treg migration toward lymph node-tropic malignant cells. Given 
the existence of an antagonist AMG487 blocking CXCR3 (refs 36–38), 
we compared the migration of Tregs into parental tumor versus 
LN6 tumor with and without AMG487 treatment in vivo (Fig. 6h). 
We found that LN6 tumors recruited more Tregs than the parental 
tumors (Fig. 6i). Following AMG487 treatment on LN6 tumors, the 
number of Tregs recruited into the tumor was reduced (Fig. 6j).

discussion
Spatial biology is a new frontier that has become accessible through 
advances in multiplexed in situ imaging. Exploring this frontier 
often involves converting pixel-based images into an interpreta-
ble cell-based format. This poses numerous technical challenges, 
among which is cell type identification. We developed CELESTA, 
an unsupervised machine learning method, for facilitating cell 
type identification on multiplexed images. CELESTA can pro-
cess a tissue sample with 100,000 cells in the order of minutes on  
a typical laptop.

CELESTA has several important features. To determine whether 
a marker expression is high or low in a cell in a more reproduc-
ible manner than commonly used methods, CELESTA converts a 
marker expression into a probability of expression and allows the 
user to identify a threshold of high versus low expression. CELESTA 
leverages neighborhood enrichment, which is ignored in common 
cell type identification methods. Using a benchmark image dataset, 
however, we show that cells with the same cell types are enriched 
in each other’s nearest spatial neighborhoods. Because CELESTA 
is not based on manual gating or clustering and instead assigns 
the cell type to individual cells based on probabilities, it preserves 
single-cell resolution in cell type assignments. CELESTA uses a cell 
type resolution strategy that incorporates cell lineage information 
to improve computational speed and robustness. Users define the 
inputs required by CELESTA, and the effect of these inputs can be 
transparently evaluated through sensitivity analyses. Although our 
current analysis prioritized accuracy over the number of cells clas-
sified, the users can choose the parameters that trade-off accuracy 
and quantity of cells classified. We applied CELESTA to images gen-
erated on CODEX, but CELESTA could also be extended to other 
imaging platforms.

CELESTA still has several limitations. CELESTA requires seg-
mented cells as input and thereby relies on the performance of the 
segmentation algorithm. For rare cell types, because their neigh-
borhoods could be enriched with a different cell type with larger 
abundance, we recommend using smaller neighborhood sizes (5 
cells or less). Technical artifacts from the imaging platform could 
add noise to the marker expression39,40; in such cases, some manual 

intervention may still be needed after CELESTA’s fast assessment. 
CELESTA relies on markers in the user-defined initial cell type sig-
nature matrix. A poorly informed initial cell type signature matrix 
will negatively affect the results, as would the mislabeling of a cell 
cluster. In addition, too few anchor cells assigned for a cell type may 
not provide sufficient spatial information to identify non-anchor 
cells for that cell type. Currently, CELESTA does not account for 
morphological features. Future additions to improve CELESTA 
could include morphological features for each cell.

After using CELESTA for cell type identification in HNSCC 
imaging, we performed spatial analysis by adapting a geospatial 
statistic and identified cell type pair co-localizations of primary 
HNSCC associated with node status. Integrating this analysis with 
tissue-proximal scRNA-seq data, we identified CXCL10 and CXCR3 
as having higher expression in malignant cells and Tregs, respec-
tively, in N+ than in N0 HNSCC. This implicates CXCL10–CXCR3 
crosstalk in the mediation of HNSCC lymph node metastasis, and 
supports prior work associating CXCL10–CXCR3 crosstalk with 
T cell trafficking and metastasis41,42. Using an antagonist of CXCR3 
to reduce Treg tumor infiltration, we show that the CXCL10–
CXCR3 axis is a potential therapeutic target. Our integrative spatial 
and scRNA-seq analysis also identified the CCR6–CCL20 axis as 
mediating immune–endothelial crosstalk in node-positive disease, 
which is consistent with prior work associating this interaction with 
cancer progression43–45.

In summary, we propose CELESTA as a fast and robust cell 
type identification method for multiplexed in situ images. Using 
CELESTA, we demonstrate the power of spatial biology to guide the 
discovery of clinically relevant cell–cell interactions.
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Methods
CELESTA. Marker-scoring function. The marker-scoring function assesses how 
well a cell’s marker expression profile matches the cell type markers defined by 
the cell type signature matrix. To apply the marker-scoring function, we first need 
to quantify whether a marker has high or low expression in a cell. We apply a 
two-mode Gaussian mixture model to fit each marker’s expressions across the cells 
in a sample:

f (xm|λ) =
∑

a
ϕag (xm|μa, Σa) , a = {0, 1} , λ = {ϕ, μ, Σ), m = {1, …,M} (1)

where M is total number of markers, xm is the expression across cells for marker 
m, ϕ is the mixing probabilities that sum up to 1, μ is the mean and Σ is the 
variance. Assuming that a marker with high expression is in state a = 1 and a 
marker with low expression is in state a = 0, the posterior distribution for a marker 
with high expression is p(a = 1|xm) and that for a marker with low expression is 
p(a = 0|xm). At the decision boundary we have:

p (a = 1|xm) = p(a = 0|xm) (2)

Using Bayes’ theorem:

p (xm|a = 1) p (a = 1) = p (xm|a = 0) p(a = 0) (3)

where p (xm|a = 1) = g(xm|μ1, Σ1) and p (xm|a = 0) = g(xm|μ0, Σ0). p (a = 1) 
and p (a = 0) are the mixing probabilities ϕ1 and ϕ0. By solving equation 3, we 
identify the decision critical point xc at which a marker has equal probability 
of high versus low expression. We use a logistic function to quantify a marker 
expression probability (EP) for each marker in each cell as:

EP (xm) =
1

1 + exp (− (xm − xc))
(4)

We repeat the process for every marker; thus, for each cell, every marker 
expression is converted into a probability of marker expression scaled between 0 
and 1. Next, we define the cell type score F for a cell i and cell type k as 1 minus the 
mean squared error between cell i’s marker expression probability profile and the 
marker reference profile in the cell type signature matrix for cell type k normalized 
for all cell types as follows:

Zik = 1 −

1
M

M∑

m=1
(EPim − SPkm)

2, Fik =
Zik∑K
t=1 Zit

(5)

where M is total number of markers, EP is the expression probability and SP is the 
reference probability in the cell type signature matrix. For each cell i we calculate 
the scores for each cell type k for k = 1, …, K, where K is the total number of cell 
types in the cell type signature matrix in a resolution round. When a cell has one 
dominant cell type score that satisfies the cell type probability threshold, and the 
cell’s marker expression probability satisfies the high and low expression probability 
thresholds for that cell type, CELESTA assigns the corresponding cell type to that 
cell and defines it as an anchor cell. For example, by setting the cell type probability 
threshold as 0.5 and the high and low expression probability thresholds as 0.7 and 
0.3, for a cell to be a tumor cell it needs have a marker score of 0.5 or greater in 
equation 5. In addition, it needs to have a cytokeratin expression probability of 0.7 
or greater, and the marker expression probability for all other measured markers 
needs to be 0.3 or lower. The high and low thresholds for expression probability 
provide the user with the flexibility to reduce artifacts due to, for example, doublets 
or noise from non-specific staining. Once the anchor cells are identified, the cell 
type signature matrix is updated to represent the average marker probabilities of 
the anchor cells. The cell type signature matrix becomes updated as non-anchor 
cells are assigned to specific cell types.

Markov random field. For the cells whose marker expression probability profile 
is ambiguous (non-anchor cells), CELESTA is designed to maximize the 
joint probability distribution using a Markov random field46 that includes a 
spatial-scoring function component to account for cell spatial information and a 
marker-scoring function component to account for the marker expression profile. 
For non-anchor cells, we assume each cell i is a node in an undirected graph and 
each cell has connected neighboring cells that are stochastically dependent. We 
model the stochastic spatial dependency defined on the undirected graph G with 
the edges connecting each cell to its N nearest neighboring cells. Based on the 
sensitivity analysis, we recommend N = 5–10. We associate each node with an 
unknown state S, which is the cell type to be inferred. The spatial dependency is 
modeled by a hidden Markov random field with joint probability distribution:

P(S;β) = W (β)−1 exp
(
−E (S;β) +

∑

i∈I
F
)

(6)

where I is the total number of unassigned cells after anchor cell assignment, β is a 
set of model parameters to be estimated, W(β) is a normalization constant, F is the 
marker-scoring function and E is the spatial-scoring function defined next.

Spatial-scoring function. We use the Potts model energy function defined as:

Eik (si;βik) = −βik

N∑

i∼j
1[si = sj] (7)

where N is the number of nearest spatial neighboring cells of cell i based on the x 
and y coordinates of the cells obtained from the image. Each time a neighbor cell 
j has cell type k, the energy function is increased by 1 for the cell type k. For each 
non-anchor cell i, we calculate the spatial scores for each cell type k based on its 
neighborhood cell types. β is a set of model parameters that captures the distances 
between cells. β is used to decide how much information to include from the 
neighboring cells, and is defined as a triangular kernel multiplied by a scale factor 
γ as follows:

βik = γ ×

(
1 −

dik
h

)
for dikh < 1.Otherwise, βik = 0 (8)

where dik is the distance between unassigned cell i and its nearest cell that has cell 
type k assigned, and h is a user-defined bandwidth. γ is set at 5. The closer a cell 
i to its nearest cell assigned to cell type k, the higher the βik. If there are no cells 
of cell type k assigned within distance h to the unassigned cell, no neighborhood 
information from cell type k is used. A cell could be isolated if it is too far away 
from other cells with cell types identified.

Optimization of objective function for cell type identification. Because our objective 
function in equation 6 is non-convex, we use a pseudo-expectation–maximization 
algorithm to iteratively solve it. For each unassigned cell, we approximate  
the probability of cell type k for an unassigned cell i using a mean field 
approximation by:

pik =
Fik × E(sik, βik)∑K
t=1 Fit × E(sit, βit)

(9)

where K is the total number of cell types in the cell type signature matrix. If 
multiple rounds are used with the cell type resolution strategy, K is the total 
number of cell types in a round. For each cell i, the probabilities for all of the cell 
types K should sum up to 1. Essentially, we approximate the probabilities of each 
cell type for cell i and assign the cell type with the highest probability provided 
that the cell type probability threshold is satisfied. For example, if there are four 
cell types defined in a round, this probability threshold should be set higher than 
0.25. We recommend that this threshold value is no greater than 0.5, otherwise it 
could result in too many unassigned cells. If the cell type probabilities do not pass 
the threshold then no cell type is assigned for that cell in the current iteration and 
the cell is carried over to the next iteration. In the following iterations, as more cell 
types are assigned, that cell may have increased neighborhood information. After 
each iteration we update the cell type signature matrix β and the neighborhood 
cell types based on the newly assigned cells. The algorithm converges when the 
percentage of additional assigned cells is smaller than a user-defined threshold. 
The default convergence threshold is 1%. After convergence a cell is assigned to the 
‘unknown’ category if it has not been assigned with a cell type.

Human tumor specimens. All patients from Stanford Hospital who were 
included in the study gave consent to take part in the study with no participant 
compensation following Institutional Review Board (IRB) approval (IRB protocol 
no. 11402). The patient information is summarized in Supplementary Table 2. 
Fresh HNSCC tissue was collected within 6 h after surgical resection. A 2–3 mm 
piece of tissue was cut from the sample. Samples from patients 7153 and 7155 were 
immediately frozen in OCT (optimal cutting temperature) freezing media, while 
the other samples were placed in 30% sucrose for 1 h at 4 °C and frozen in OCT 
freezing media (Fisher Healthcare) on a metal block chilled in liquid nitrogen. The 
OCT samples were stored at −80 °C for CODEX processing and sequencing. The 
remaining tissue was placed on ice and processed in 50 μl tissue digestion media 
(DMEM-F12+ with magnesium and calcium (Corning Cellgro), 1%FBS (heat 
inactivated), 10 units ml−1 Penicillin–10 μg ml−1 Streptomycin (Gibco), 25 mM 
HEPES (Gibco)).

CODEX image acquisition and segmentation. Multiplexed CODEX analysis of 
HNSCC samples was performed using а panel of antibodies (Supplementary Table 
3) conjugated to custom DNA barcodes and detector oligos and common buffers, 
with a robotic imaging setup, according to the instructions for CODEX staining 
of frozen specimens from Akoya Biosciences (https://www.akoyabio.com/). The 
7 μm sections were cut with a cryostat after the OCT blocks were equilibrated to 
the cryostat temperature for at least 30–40 min. Tissue sections were placed on the 
surface of cold poly-l-lysine-coated coverslips and adhered by touching a finger 
to the bottom surface to transiently warm up the coverslip. Frozen sections on 
coverslips can be stored at −70 °C for 1–2 months. Prior to staining the sections, 
frozen sections removed from the freezer were dried for 5 min on the surface of 
Drierite. Dried coverslips with sections on them were dipped for 10 min into room 
temperature acetone, then fully dried for 10 min at room temperature (20 °C). 
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Sections were then rehydrated for 5 min in S1 (5 mM EDTA (Sigma), 0.5% w/v 
BSA (Sigma)) and 0.02% w/v NaN3 (Sigma) in PBS (Thermo Fisher Scientific), 
then fixed for 20 min at room temperature (20 °C) in S1 with 1.6% formaldehyde. 
Formaldehyde was rinsed off twice with S1. Sections were equilibrated in S2 
(61 mM Na2HPO4 ∙ 7H2O (Sigma)), 39 mM Na2HPO4 (Sigma) and 250 mM NaCl 
(Sigma) in a 1:0.7 v/v solution of S1 and doubly distilled H2O (ddH2O) with a 
final pH of 6.8–7.0 for 10 min, and placed in blocking buffer for 30 min. All steps 
followed the Akoya CODEX instructions. Automated image acquisition and 
fluidics exchange were performed using an Akoya CODEX instrument driven 
by CODEX driver software and a Keyence BZ-X710 fluorescent microscope 
configured with four fluorescent channels (DAPI, FITC, Cy3, Cy5) and equipped 
with a CFI Plan Apo λ ×20/0.75 objective (Nikon). Hoechst nuclear stain (1:3,000 
final concentration) was imaged in each cycle at an exposure time of 1/175 s. 
Biotinylated CD39 detection reagent was used at a dilution of 1:500, and visualized 
in the last imaging cycle using DNA streptavidin–phycoerythrin (1:2,500 final 
concentration). DRAQ5 nuclear stain (1:500 final concentration) was added and 
visualized in the last imaging cycle. Each tissue was imaged with a ×20 objective in 
a 7 × 9 tiled acquisition at 1,386 × 1,008 pixels per tile and a resolution of 396 nm 
per pixel, with 13 z-planes per tile (axial resolution 1,500 nm). Images were chosen 
with the best focus from the z-planes, and out-of-focus light was removed using 
deconvolution. Acquired images were preprocessed (alignment and deconvolution 
with Microvolution software http://www.microvolution.com/) and segmented 
(including lateral bleed compensation) using a publicly available CODEX image 
processing pipeline available at https://github.com/nolanlab/CODEX.

Manual assessment of CELESTA performance on the HNSCC cohort. 
CELESTA performance on the HNSCC cohort was assessed manually by 
mapping CELESTA-assigned cell types onto the original images using the x and 
y coordinates with the ImageJ plugin from https://github.com/nolanlab/CODEX 
(Extended Data Figs. 6 and 7). For each cell type, CELESTA-assigned cells were 
plotted as yellow crosses on the canonical marker staining images. Marker staining 
was shown as a white signal on a black background. Key marker staining for each 
cell type is shown in Extended Data Figs. 6 and 7. Assessment for each cell was 
defined as positive canonical marker signals for that cell type.

Manual gating of the HNSCC cohort. The segmented dataset was uploaded onto 
the Cytobank analysis platform and transformed with an inverse hyperbolic sine 
(cofactor of 5). The gating strategy was as follows: cells were defined using DRAQ5 
nuclear expression and size, followed by endothelial (CD31+) and malignant 
cells (cytokeratin+). CD4+ T cells (CD4+ CD8− CD3+ CD31− cytokeratin−), 
CD8+ T cells (CD8+ CD4− CD3+ CD31− cytokeratin−) and Tregs (FOXP3+ 
CD25+ CD4+ CD8− CD3+ CD31− cytokeratin−) were defined. To adjust for 
the variability between sample image collection, each gate was tailored to each 
individual sample.

Spatial co-localization analysis. We used the co-location quotient to identify cell 
spatial co-localization. By denoting cell type a as the target cells and cell type b 
as the neighboring cells, the co-location quotient shows the degree to which cell 
type b co-locates spatially with cell type a as a ratio of the observed to the expected 
number of cell type b among the set of nearest neighbors of cell type a, defined as:

CLQb→a =
Cb→a/Na

Nb/(N − 1) (10)

where C is the number of cells of cell type b among the defined nearest neighbors 
of cell type a. N is the total number of cells and Na and Nb are the numbers of cells 
for cell type a and cell type b. Cell types with fewer than 20 cells were excluded 
for each sample. We calculated the co-location quotient for the pairwise cell types 
identified, and compared the co-location quotients for each pair between N+ and 
N0 samples.

HNSCC Tumor tissue dissociation. Tumor tissue was thoroughly minced 
with a sterile scalpel and placed in a gentleMACS C-tube (Miltenyi Biotec) 
containing 1.5 ml tissue digestion media. Tissue was mechanically digested on 
the GentleMACS dissociator five times under the human tumor tissue program 
h_tumor_01. Tissue was filtered with a 40 μm nylon cell strainer (Falcon) into a 
14 ml tube that was then filled up to 14 ml with tissue digestion media and spun at 
4 °C for 10 min at 514 r.c.f. The mechanically digested cell pellet was re-suspended 
for 2 min on ice in 1–4 ml ACK (ammonium-chloride-potassium) lysis buffer 
(Gibco) depending on the pellet size and number of red blood cells present. Cells 
were filtered with a 40 μm nylon cell strainer (Falcon) into a 14 ml tube that was 
then filled up to 14 ml with FACS buffer (PBS without calcium or magnesium 
(Corning), 2%FBS (heat inactivated), 10 units ml−1 Penicillin–10 μg ml−1 
Streptomycin (Gibco) and 1 mM Ultra Pure EDTA (Invitrogen)) and spun at 4 °C 
for 10 min at 514 r.c.f. Cells were washed one more time with FACS buffer and 
re-suspended in 25 μl FACS buffer. Solid tissue in the strainer was collected and 
placed back in the C-tube with 2 ml tissue digestion media of 1 ml 3,000 U ml−1 
collagenase/1,000 U ml−1 hyaluronidase (StemCell Technologies) and 1 ml 5 U ml−1 
dispase (StemCell Technologies). The solid tissue in the C-tube was incubated at 
37 °C on a rotator for 1 h, and then filtered with a 40 μm nylon cell strainer (Falcon) 

into a 14 ml tube that was then filled up to 14 ml with tissue digestion media and 
spun at 4 °C for 10 min at 514 r.c.f. The enzymatically digested cell pellet was 
re-suspended in 1–4 ml ACK lysis buffer (Gibco) (depending on the pellet size 
and number of red blood cells present) for 2 min on ice. Cells were filtered with a 
40 μm nylon cell strainer (Falcon) into a 14 ml tube that was then filled up to 14 ml 
with FACS buffer (PBS without calcium or magnesium (Corning), 2%FBS (heat 
inactivated), 10 units ml−1 Penicillin–10 μg ml−1 Streptomycin (Gibco) and 1 mM 
Ultra pure EDTA (Invitrogen)) and spun at 4 °C for 10 min at 514 r.c.f. Cells were 
re-suspended in FACS buffer, counted on a hemacytometer and washed one more 
time with FACS buffer. Cells were kept in FACS buffer on ice until flow cytometry 
staining. The sorting panel is listed in Supplementary Table 5.

Single-cell RNA sequencing. RNA and library preparations were performed 
according to the 10x Genomics v2.0 handbook. Single cells were obtained from 
tissue dissociation. Cells were stained with 4′,6-diamidino-2-phenylindole 
dihydrochloride (DAPI) for live–dead detection and sorted for up to 500,000 
live cells on a BD Aria II. Cells were counted after sorting and before 10x chip 
preparation. The 10x/Abseq (BD Biosciences) library preparation followed the 
same protocol as the 10x Genomics samples except the addition of Fc Block and 
Abseq antibody staining according to the manufacturer’s handbook. Reads were 
aligned using CellRanger. Preprocessing, data normalization and batch correction 
were done following the Seurat SCTransform integration pipeline. Cells were 
clustered by shared nearest neighbor modularity optimization. The cell types 
present were identified using canonical markers.

HNSCC tissue microarray. Formalin-fixed paraffin-embedded tissue blocks of 
HNSCC from 79 patients were pulled from the Stanford Health Care Department 
of Pathology archives. The area of malignancy was marked by a board-certified 
pathologist (C.S.K.). The TMA was constructed from 1-mm-diameter cores 
punched from the tissue blocks. The 4-μm-thick sections were stained with 
hematoxylin and eosin, FOXP3 (clone 236A/E7, 1:100 dilution; Leica BOND 
epitope retrieval solution 2) and cytokeratin mix (AE1/AE3, 1:75 dilution and 
CAM5.2, 1:25 dilution; Ventana Ultra; protease retrieval). The slides were digitized 
using a Leica whole-slide scanner with ×40 magnification. Three samples with 
unknown node status were excluded from analysis. To assess the co-localization 
of FOXP3 and cytokeratin immunohistochemistry staining, the whole-slide 
images were dearrayed to obtain each core image. We ran color deconvolution to 
quantify DAB staining using the scikit-image package in Python. We thresholded 
the staining based on pixel intensity distributions of the DAB staining to quantify 
the positively stained pixels in the images. We used a sliding window of 100 × 100 
pixels to quantify the positive pixel densities for cytokeratin and FOXP3 in each 
window and moved the sliding window to cover the whole core area. We correlated 
the densities of cytokeratin staining and FOXP3 staining across the whole core  
area for each sample. We then compared the density correlations between the N0 
and N+ samples.

Statistical analysis and figure creation. Statistical analyses were performed 
and the corresponding figures were generated in R or Python. Student’s t-test 
was used for comparisons of co-location quotient and comparisons of TMA 
density correlation between HNSCC N0 and N+ samples. For in vitro and in vivo 
functional experiments the non-parametric Wilcoxon rank-sum test was used for 
comparisons. In addition, when comparing paired conditions with equal sample 
sizes, we used the paired t-test. For multiple testing of differentially expressed 
gene expressions in scRNA-seq data, the permutation test (SAMR)47 was used, and 
the false discovery rate was used to adjust the P values. Results were considered 
statistically significant for P < 0.05 or adjusted P < 0.05 for multiple testing.

For cell neighborhood enrichment analysis (Extended Data Fig. 1a), for the 
five nearest neighbor cells for each cell, the number of cells of each cell type was 
calculated and the observed total number of cell types in the neighborhood of 
another cell type could be calculated. Using 1,000 permutations of the cell labels, 
the distribution of the randomly expected number of neighboring cells for each 
cell type could be constructed, and a right-tailed P value was used to confirm that 
the observed number was larger than 95% of the randomly expected number for 
enrichment. The Benjamini–Hochberg procedure was used to adjust the P values. 
A statistically significant neighborhood enrichment of cells was confirmed when 
both the P value and the adjusted P value were less than 0.05.

For the public colorectal cancer dataset the ground truth was defined using 
the published annotations. For the HNSCC study cohort dataset the ground 
truth is defined using manual gating. For the public colorectal cancer dataset, cell 
types with fewer than 5 cells in a sample region in the annotations were excluded. 
For each cell type, the true positive (TP) is the number of cells assigned by both 
CELESTA and the ground truth benchmark, the false positive (FP) is the number 
of cells assigned by CELESTA but not by the ground truth benchmark, the false 
negative (FN) is the number of cells assigned by the benchmark but not by 
CELESTA, and the true negative (TN) is the number of cells not assigned by both 
CELESTA and the benchmark. For the HNSCC cohort the adjusted Rand index 
was calculated using the adjustedRandIndex function in the R package mclust. 
Precision is defined as TP/(TP + FP), and recall is defined as TP/(TP + FN). F1 
score is defined as 2(precision × recall)/(precision + recall). The Rand index, a 
measure of accuracy, is defined as (TP + TN)/ (TP + TN + FP + FN).
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Parts of Figs. 5 and 6 were created using the Biorender online tool (https://
biorender.com). Multichannel overlay images were created using ImageJ.

Cell lines and animals. Cells were cultured in DMEM supplemented with 4 mM 
l-glutamine, 10% FBS and 1% Penicillin Streptomycin. The tumor lines were 
routinely tested for Mycoplasma using polymerase chain reaction, and all tests 
were negative. All animal studies were performed in accordance with the Stanford 
University Institutional Animal Care and Use Committee under protocol APLAC-
17466. All mice were housed in an American Association for the Accreditation 
of Laboratory Animal Care-accredited animal facility and maintained in specific 
pathogen-free conditions.

Transwell migration assays. FoxP3EGFP mice48 were acquired from The Jackson 
Laboratory (catalog no. 006772) and bred at Stanford University. Splenocytes were 
collected from tumor-naive female FoxP3EGFP mice. All studies were performed 
in female mice between 7 and 9 weeks of age. Mice were housed in facilities 
maintained at a temperature of 18–24 °C, with humidity between 40% and 60% and 
with 12–12 light–dark cycles (07:00–19:00 hours). Spleens underwent mechanical 
dissociation on 70 μm cell strainers and were washed with HBSS supplemented 
with 2% FBS and 2 mM EDTA (HBSSFE). Erythrocytes were lysed with ACK. 
Magnetic isolation of Tregs was performed using the EasySep Mouse CD25 
Regulatory T cell Positive Selection Kit (StemCell, catalog no. 18782) according to 
the manufacturer’s instructions. Tregs were cultured in RPMI-1640 supplemented 
with 10% FBS, 2 mM l-glutamine, 15 mM HEPES, 14.3 mM 2-mercaptoethanol, 
1 mM Sodium Pyruvate, 1× MEM Non-Essential Amino Acids Solution and 300 IU 
hIL-2 (Peprotech) for 72 h.

Tumor cell line suspensions were prepared by washing with PBS followed by 
treatment with StemPro Accutase (Thermo, catalog no. A1110501). A total of 
105 tumor cells were plated in the bottom chamber of the 24-well transwell plates 
24 h prior to the assay. The 5 μm transwell membranes (Costar, catalog no. 3421) 
were incubated in complete RPMI for 24 h prior to the assay. Membranes were 
transferred to the tumor-containing wells and suspensions of 5 × 104 Tregs were 
added to the top chambers of the transwells. Cells were cultured for 2 h at 37 °C 
in 5% CO2, after which the membranes were removed, and cells from the bottom 
chamber were processed for analysis by flow cytometry.

Cell suspensions were washed in HBSSFE and stained with the following 
antibodies: Mouse Fc Block (BD, 2.4G2, 553142, 1:200), CD4 (BioLegend, RM4-5, 
100563, 1:200), CD25 (BioLegend, PC61, 102026, 1:75), and CXCR3 (BioLegend, 
CXCR3-173, 155906, 1:100). DAPI was used to stain for viability. Samples were  
run on an LSRFortessa cytometer (Becton Dickinson) and analyzed using FlowJo 
V10 (TreeStar).

In vivo Treg tumor infiltration. Experiments were performed using either 
C57NL/6J (The Jackson Laboratory, catalog no. 000664) or FoxP3EGFP (The Jackson 
Laboratory, catalog no. 006772) female mice housed in our facility at Stanford. 
B16-F0 or LN6-987AL tumor cells were washed with PBS and dissociated from 
tissue culture plastic with StemPro Accutase (Thermo, catalog no. A1110501). 
Cell suspensions of 2 × 105 cells in phenol-red free DMEM were injected into the 
subcutaneous region of the left flank of 9-week-old female mice (The Jackson 
Laboratory, catalog no. 000664) following removal of fur with surgical clippers. 
After 15 days of tumor growth the mice were euthanized and their tumors were 
processed for analysis by flow cytometry.

Tumors were weighed followed by digestion in RPMI-1640 supplemented with 
4 mg ml−1 Collagenase Type 4 (Worthington, catalog no. LS004188) and 0.1 mg ml−1 
Deoxyribonuclease I (DNAse I, Sigma, catalog no. DN25) at 37 °C for 20 min with 
agitation. Tumors were then dissociated on 70 μm strainers, washed with HBSSFE 
and stained for viability using LIVE/DEAD Fixable Blue Dead Cell Stain (Thermo, 
catalog no. L34962). Surface proteins were stained, samples were fixed and 
permeabilized using the eBioscience FoxP3 Fixation/Permeabilization kit (Thermo, 
00-5521-00), and intracellular FoxP3 was stained. The following antibodies were 
used: Mouse Fc Block (BD, 2.4G2, 553142, 1:200), CD4 (BioLegend, RM4-5, 
100563, 1:200), CD8α (BioLegend, 53-6.7, 100750, 1:200), CD3 (BioLegend, 17A2, 
100237, 1:75), CD25 (BioLegend, PC61, 102026, 1:75), B220 (BioLegend, RA3-6B2, 
103255, 1:200), CD45.2 (BioLegend, 104, 109806, 1:100) and FoxP3 (Thermo/
eBiosciences, NRRF-30, 12-4771-82, 1:20). AccuCount fluorescent particles 
(Spherotec, catalog no. ACFP-50-5) were added to each sample to determine 
absolute cell counts. Samples were run on an LSRFortessa cytometer (Becton 
Dickinson) and analyzed using FlowJo V10 (TreeStar).

For CXCR3-blockade studies, LN6-987AL cells were prepared as above and 
injected into 7-week-old FoxP3EGFP mice. Mice were treated with AMG487 (R&D 
Systems, catalog no. 4487) at 5 mg kg−1 every 48 h starting on day 1 following tumor 
implantation. After 9 days of tumor growth the mice were euthanized and their 

tumors were processed for analysis by flow cytometry (BD FACS Diva 8.0.2) as 
described above.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

data availability
The scRNA-seq data are deposited at GEO: GSE140042. HNSCC imaging data are 
hosted at Synapse.org SageBionetworks at https://doi.org/10.7303/syn26242593. 
The benchmark public imaging data can be found at https://doi.org/10.7937/
tcia.2020.fqn0-0326. Source data are provided with this paper.

Code availability
All codes related to CELESTA can be found at https://github.com/plevritis/
CELESTA. The source codes are also hosted at Code Ocean at https://doi.
org/10.24433/CO.0677810.v1 (ref. 49).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Neighborhood enrichment analysis, expression distributions of protein markers and illustration of final updated prior knowledge 
cell type signature matrix. (a) Cell neighborhood enrichment analysis using Schurch et al.6 cell type annotations. Red versus blue indicates that cells of a 
given cell type (columns) are significantly enriched versus are not enriched, respectively, in the 5-nearest neighborhood of a cell type of interest (rows). 
Cells of the same or similar cell type are enriched in each other’s neighborhoods. Statistical significance is determined with p-value right tail < 0.05 and 
Benjamini–Hochberg adjusted p-value < 0.05. Legend for cell count indicates the number of cells below 2,000, (2,000–4,000), (4,000–6,000), (6,000–
8,000) and over 8,000 for each cell type across the 70 samples. (b) Histograms of protein expressions in a representative sample. Red curves illustrate 
fitted bimodal Gaussian mixture model. The protein expression levels were ArcSinh transformed. (c) Illustration of final updated prior knowledge cell type 
signature matrix on a representative sample from Schurch et al. data. The initial user-defined cell type signature matrix is shown in Supplementary Table 
1. There were no NK cells identified in this sample, and thus information on NK cells is not updated in the cell type signature matrix. White to red color 
indicates values from 0 to 1. Gray color indicates NA values.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Comparison between CELESTA and Schurch et al.6 annotations on the colorectal cancer dataset. (a) Confusion matrix for  
each cell type identified by CeLeSTA (rows) versus Schurch et al.6 (column) for 70 samples. White to red color indicates values from low to high.  
(b) Nuclei staining for sample core 032. (c) Cytokeratin staining for sample core 032. (d) Tumor cells identified by Schurch et al. (yellow crosses) overlaid 
on cytokeratin staining for sample core 032. (e) Tumor cells identified by CeLeSTA overlaid on cytokeratin staining for sample core 032. (f) Average 
canonical cell type marker expressions across all the 70 samples on cells identified to be tumor cells by (i) both CeLeSTA and Schurch et al. (black),  
(ii) only CeLeSTA (orange), and (iii) only Schurch et al. (blue). (g) Similar to (f) but with error bars indicating 95% confidence interval based on sampling 
the same number of cells from each category across n = 70 samples and center values indicate mean values.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Testing leave-one-out marker and cell type resolution strategy and sensitivity analysis of user-defined parameters 
(hyperparameters) in CELESTA using the Schurch et al.6 dataset. (a) Assigned cell type proportions for testing of different cell type signature matrices 
with each time leaving one cell type marker and corresponding cell type out. (b) Comparison of CeLeSTA’s performance with (yellow) and without 
(purple) cell type resolution strategy. (c) Average numbers of neighboring cells as a function of the bandwidth parameter across n = 70 samples. error 
bar indicates standard deviation, and center value indicates mean values. (d) F1 score as a function of the number of nearest neighbors. Left panel: major 
cell populations. Right panel: cell types with smaller populations. (e) effect of different values for the threshold of high marker probability expression. Left 
panel: Number of cells assigned to unknown cell types as a function of the threshold for high marker probability expression. Middle panel: F1 scores as a 
function of the threshold for high marker probability expression, for major cell types. Right panel: F1 scores as a function of the threshold for high marker 
probability expression, for cell types with smaller populations.
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Extended Data Fig. 4 | Comparison of expression probabilities versus original staining across a representative sample. expression probability for a given 
marker for each cell CeLeSTA (left) compared to marker staining on the original image (right). For the CeLeSTA result, the marker expression probability is 
shown at the XY coordinates of the cell, where the XY coordinates represents the cell’s center; marker expression probabilities are color-coded for values 
over 0.5 in light blue to over 0.9 in dark blue. Markers illustrated are: (a) aSMA, a mesenchymal marker, (b) cytokeratin, a tumor marker and (c) CD31, an 
endothelial marker.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Analysis of two different clustering-based methods (namely, flowMeans and FlowSoM) used to assign cell types on the Schurch 
et al.6 dataset. (a) Heatmaps of cluster marker expressions on different numbers of clusters (n = 20, 30, 50) with two independent annotators (Anno1 
and Anno2) to assign cluster cell types based on manual assessment of cluster protein marker expressions; light green indicates matched annotations and 
dark green indicates mismatched annotations. (b) Percentage of matched cluster annotations between the two annotators as a function of the number 
of clusters, for two different clustering methods. (c) Number of cell types identified by the two annotators as a function of the number of clusters, for the 
two different clustering methods. (d) The percentage of cells assigned to unknown cell types with CeLeSTA and the two different clustering methods, as 
a function of the number of clusters and the annotator. (e) F1 scores per cell type, comparing CeLeSTA and cell type assignments from the two annotators 
using the two different clustering methods, where annotations from Schurch et al. are used as ground truth. Abbreviations: Anno1 for Annotator 1; Anno2 
for Annotator 2.
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Extended Data Fig. 6 | Visual assessment of CELESTA’s performance for a representative hNSCC sample. (a)-(f) Identified cells are shown as yellow 
crosses using the x and y coordinates overlaid on canonical marker staining (white) CODeX images. For each cell type, nuclei staining and three example 
markers (positive and negative) important for the cell type are shown. Cell types shown (a)-(f): malignant cells, endothelial cells, fibroblast cells, B cells, 
NK cells, plasmacytoid dendritic cells.
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Extended Data Fig. 7 | Additional visual assessment of CELESTA’s performance for a representative hNSCC sample. (a)-(f) Identified cells are shown 
as yellow crosses using the x and y coordinates overlaid on canonical marker staining (white) CODeX images. For each cell type, nuclei staining and three 
example markers (positive and negative) important for the cell type are shown. Cell types shown (a)-(f): T cells, conventional dendritic cells, neutrophils, 
CD8 + T cells, CD4 + T cells, Treg cells.
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Extended Data Fig. 8 | Gating strategies on the head and neck squamous cell carcinoma (hNSCC) samples. Gating strategies used to identify key cell 
types relevant to the HNSCC study including malignant cells, endothelial cells and subtypes of T cells.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Additional scRNA-seq analysis of primary hNSCC samples and scRNA-seq analysis using public domain data from Puram et al. 
(2017)34. (a) UMAP plot of identified cell clusters with node status on the study HNSCC cohort. (b)-(c) UMAP plots highlighting expression of FOXP3, 
IL2RA, CXCR3, CD4 and CD8A. (d) CXCR3 expression in different T cell clusters showing that CXCR3 is differentially expressed in N0 (n = 2) versus 
N + (n = 2) samples only in the Treg cells. (e) Violin plot of STAT1 expression in the Treg cluster between N + (n = 2) and N0 (n = 2) samples. STAT1 is a 
CXCR3 inducer. (f) Violin plot of CXCL9 and CXCL11 in the malignant cell cluster between N + (n = 2) and N0 (n = 2) samples. CXCL9 and CXCL11 are 
both ligands of CXCR3, but they are not differentially expressed in our data. (g) Heatmap shows expressions of CD274 (PD-L1), MUC1, eMT markers 
(CDH1 and VIM) and stemness markers (CD44 and CD24). (h) UMAP of identified cell clusters using the Puram et al. dataset. (i) UMAP of identified cell 
type clusters with node status color-coded. (j) UMAP plots of CD4, CD8A, and FOXP3. (k) UMAP plot of CXCR3. (l) Violin plots of CXCR3 in the T cell 
clusters between N + (n = 12) and N0 (n = 6) samples. (m) Violin plot of CXCL10 in malignant cell cluster 0 between N + (n = 12) and N0 (n = 6) samples. 
Differentially expressed genes were identified using SAMR and false discovery rate was used to adjust p-values. Center line of box plot defines data 
median, top value indicates largest value within 1.5 times interquartile range above 75th percentile, bottom value indicates smallest value within 1.5 times 
interquartile range below 25th percentile, and upper and lower bounds of the box plot indicate 75th and 25th percentile respectively. *: adjusted p-value < 
0.05, **: adjusted p-value < 0.01, ***: adjusted p-value < 0.005, ****: adjusted p-value < 0.001.
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Extended Data Fig. 10 | Gating strategies used for mouse model studies. Gating strategies used to study CXCL10–CXCR3 crosstalk between malignant 
and Treg cells in the functional studies.
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