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Identification of cell types in multiplexed in situ
images by combining protein expression and
spatial information using CELESTA

Weiruo Zhang'? Irene Li'?3, Nathan E. Reticker-Flynn#, Zinaida Good ®'25, Serena Chang>*,

Nikolay Samusik?, Saumyaa Saumyaa®®¢, Yuanyuan Li'?, Xin Zhou®?’, Rachel Liang?,
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Advances in multiplexed in situ imaging are revealing important insights in spatial biology. However, cell type identification
remains a major challenge in imaging analysis, with most existing methods involving substantial manual assessment and sub-
jective decisions for thousands of cells. We developed an unsupervised machine learning algorithm, CELESTA, which identifies
the cell type of each cell, individually, using the cell's marker expression profile and, when needed, its spatial information. We
demonstrate the performance of CELESTA on multiplexed immunofluorescence images of colorectal cancer and head and neck
squamous cell carcinoma (HNSCC). Using the cell types identified by CELESTA, we identify tissue architecture associated with
lymph node metastasis in HNSCC, and validate our findings in anindependent cohort. By coupling our spatial analysis with single-
cell RNA-sequencing data on proximal sections of the same specimens, we identify cell-cell crosstalk associated with lymph

node metastasis, demonstrating the power of CELESTA to facilitate identification of clinically relevant interactions.

tissue architectures through technological advances in mul-

tiplexed in situ imaging platforms'. Using these platforms,
specific tissue architectures have been associated with tissue devel-
opment and disease progression to improve treatment response’~"°.
For in situ image analysis, pixel-based data are often segmented
into individual cells whose cell type needs to be identified. Current
cell type identification methods typically involve manual gating or
clustering. Manual gating is subjective, and unmanageable with
high-dimensional data'"'>. Clustering cells with similar marker
expressions can be biased by numerous factors including the choice
of the number of clusters. Even after clustering, a cluster’s cell type
assignment can be subjective, particularly for clusters that are mix-
tures of cell types". Hence, even clustering requires manual assess-
ment, preferably by an expert pathologist. Given their subjective
nature, use of clustering and manual assessment for cell type identi-
fication cannot be robustly evaluated.

To address the limitations, we developed an unsupervised
machine learning cell type identification method called CELESTA
(CELI typE identification with SpaTiAl information), which does
not involve manual gating or clustering and instead leverages the
marker expressions and spatial information of cells with minimal
user dependence. CELESTA is a robust and fast (on the order of
minutes) algorithm for cell type identification that assigns individ-
ual cells to their most probable cell types through an optimization
framework leveraging prior knowledge in a transparent manner.

Spatial biology provides unprecedented characterization of

We demonstrate CELESTAs performance on data generated
using the CODEX (CO-Detection by indEXing) platform'".
CODEX is an immunofluorescence-based imaging technology that
can quantify more than 50 proteins, across tens of thousands of
cells in a tissue slice. To evaluate CELESTA’s performance against
extant methods, we applied CELESTA to a published CODEX
dataset generated on colorectal cancer samples for which cell type
identification was based on clustering and manual assessment by a
pathologist, and which we adopted as the gold standard®. CELESTA
provides cell type assignments comparable to the gold standard, in a
manner that can be robustly evaluated.

We applied CELESTA to identify tissue architectures associ-
ated with lymph node metastasis in head and neck squamous cell
carcinoma (HNSCC) using CODEX images from primary samples
associated with (N+) and without (N0) lymph node metastasis. We
identified cell types that are co-localized more extensively in N+
than in NO HSNCC, and validated our findings using tissue micro-
array (TMA) analysis from an independent cohort. By coupling our
spatial analysis with single-cell RNA-sequencing (scRNA-seq) data
on proximal sections of the imaged specimens, we identified cell-
cell crosstalk associated with node status, demonstrating the power
of CELESTA to facilitate biological discovery.

Results
Overview of CELESTA. A typical image analysis pipeline often
starts with segmenting pixel-based images into cells followed by
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Fig. 1| Image analysis pipeline with CELESTA. a, Typical analysis pipeline for multiplexed in situ image data. b, Schematic diagram illustrating the iterative
process in CELESTA's cell type assignment. ¢, In CELESTA's cell type assignment, the cell types are assigned to an image tile in which each dot represents a
single cell and is positioned on the cell's centroid.

cell type identification and spatial analysis (Fig. 1a). CELESTA first  For each non-anchor cell, CELESTA uses the cell’s neighboring cell
assigns cell types to cells whose marker expressions match prior type information, in addition to the cell's marker expressions, to
knowledge of cell type marker expressions; these cells are defined identify the cell type. Because cells are organized in coherent spa-
as ‘anchor cells. Remaining cells, whose marker expressions do not  tial patterns, we reason that spatial location is valuable information
clearly associate with a cell type, are referred to as ‘non-anchor cells.  in additional to marker expressions to infer cell type. To test this

>
>

Fig. 2 | Overview of CELESTA. a, CELESTA flowchart. b, CELESTA's inputs and preprocessing steps. ¢, Illustration of CELESTA's marker-scoring function.

d, lllustration of CELESTA's spatial-scoring function, using spatial neighborhood information for each non-anchor cell i. The cell type information from the
spatially nearest neighboring cells of cell i is derived using the energy function of the Potts model. e, Each non-anchor cell C; is associated with an unknown
state S, which is the cell type to be inferred. Cells are represented as nodes in an undirected graph with edges connecting N nearest spatial neighbors. The
joint distribution of S is assumed to satisfy a discrete Markov random field. f, lllustration of the cell type resolution strategy used by CELESTA, based on
the HNSCC imaging panel markers (in parentheses). cDC, conventional dendritic cell; CK, cytokeratin; MRF, Markov random field; NK, natural killer; pDC,
plasmacytoid dendritic cell. Beta used in the flowchart (a) is a vector of model parameters.
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assumption, we performed cell neighborhood enrichment analysis
using a published permutation strategy'® on the annotations of a
public CODEX dataset® and demonstrate that cells with the same or

similar cell types are enriched among each other’s nearest neighbors
(Extended Data Fig. 1a). CELESTA uses an iterative optimization
framework to assign cell types for non-anchor cells (Fig. 1b,c).
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Fig. 3 | CELESTA applied to a published CODEX dataset generated from a TMA of colorectal cancer primary samples (Schiirch et al.). a, Representative
TMA core with seven-channel overlay CODEX image (left), image using CELESTA-assigned cell types (middle) and image using annotated cell types from
Schurch et al.® (right). Scale bar, 50 pm. b, Cell type composition from CELESTA-assigned cell types versus annotations from Schiirch et al.6, across the 70
cores of the entire TMA. ¢, Correlations between the number of cells identified, per TMA core across 70 cores, between the CELESTA and Schirch et al.®
annotations, for each cell type. The red line indicates a perfect correlation (slope =1) and the blue line is the linear fit between the CELESTA-identified cell
types and the Schiirch et al.® annotations. R represents the Pearson correlation coefficient. d, Precision score, F1 score and accuracy (Rand index) score
for the major cell types identified by CELESTA using the Schiirch et al.® annotations as the ground truth. Error bars are calculated using s.d. across all of
the cores (n=70) as independent samples; the center of the error bars indicates the mean. A cell type is defined as rare if it has, on average, fewer than
100 cells per core. e f, CELESTA cell type assignments for a cluster that Schiirch et al.® annotated as a mixture of vasculature or immune cells (e) and as a
mixture of tumor or immune cells (f). CELESTA cell type compositions are shown in the left panels and the average canonical marker expressions for each
cell type in the cluster are shown in the right panels. aSMA, alpha-smooth muscle actin.

CELESTA (Fig. 2a) requires two main inputs. The first input is
an image segmented into individual cells. Each cell is defined by
its marker expressions and spatial location (Fig. 2b). CELESTA
determines whether a marker is over- or under-expressed in a given
cell by fitting a two-mode Gaussian mixture model to the marker
expression distribution (Extended Data Fig. 1b) derived from the
cells in a sample'”. CELESTA converts marker expression into a
probability using a sigmoid function, in which the expression levels
are scaled between 0 and 1 and the midpoint is the intersection of
two-mode Gaussian distributions.

The second input to CELESTA is a cell type signature matrix
that relies on prior knowledge of markers known to have high or
low expression in specific cell types. For each marker the cell type
signature matrix is initialized as 1 or 0 if the marker has high or
low, respectively, probability of expression, for a given cell type (see
Supplementary Table 1 for an example). A marker is denoted as ‘NA
if it is considered irrelevant for cell type identification. The cell type
signature matrix is updated as more cells are assigned (see Extended
Data Fig. 1c for an example of a final cell type signature matrix).

For the initial cell type assignment, CELESTA matches a cell’s
marker expression probability profile to the cell type signatures
using a marker-scoring function (Fig. 2c). When a cell has one
dominant cell type score, CELESTA assigns the corresponding cell
type to that cell and defines it as an ‘anchor cell’ For a cell whose
cell type cannot be identified using marker expressions alone
(‘non-anchor cell’), CELESTA leverages cell type information from
its N nearest spatial neighbors (Fig. 2d) using a spatial-scoring func-
tion that utilizes the Potts model energy function. The Potts model
has been used for image segmentation'®*, as a clustering method
on spatial transcriptomics data®' and for the analysis of pathological
images®. Using both the spatial-scoring and marker-scoring func-
tion, CELESTA represents each non-anchor cell as a node in an
undirected graph with edges connecting to its N nearest neighbors.
CELESTA associates each node with a hidden state, which is the
cell type to be inferred, and assumes that the joint distribution of
the hidden states satisfies a discrete Markov random field (Fig. 2e).
To maximize the joint probability function, CELESTA uses a
pseudo-expectation-maximization algorithm (an expectation—
maximization-like algorithm) with a mean field approximation®. In
each iteration, if the thresholds are met, cell types with maximum

probabilities are assigned to the non-anchor cells. If the marker
expressions and the spatial information still do not pass the thresh-
old for a cell type assignment, CELESTA re-evaluates the cell on the
next iteration as additional neighboring cells have been assigned.
The process is repeated until a user-defined convergence threshold
is met, whereupon unassigned cells are labeled as ‘unknown’

Incorporation of cell lineage. CELESTA introduces a cell type
resolution strategy whereby cell type assignment is performed in
multiple rounds, in which cell type resolution is increased in each
round based on known cell lineages (Fig. 2f). This strategy reduces
computational complexity and improves robustness when cell types
from different lineages share marker expressions. The pseudocode
for CELESTA is provided in Supplementary Note 1.

Performance of CELESTA. We assessed the performance of
CELESTA on a public CODEX dataset generated from a colorectal
cancer TMA®. In this dataset, the cell type assignments, which we
regard as our benchmark, were based on clustering”* and manual
assessment by a pathologist using marker expressions and cell mor-
phology features from hematoxylin-eosin images. CELESTA assign-
ments were comparable to this benchmark (Fig. 3a). The number
of cells for each cell type was highly correlated between CELESTA
and benchmarked annotations (Fig. 3b,c). Using the benchmarked
annotations as ground truth, CELESTA achieved average accuracy
scores (Rand index) of around 0.9, average precisions between 0.6
and 0.8, and F1 scores between 0.6 and 0.7 across the major cell types
(Fig. 3d). For rare populations, CELESTA achieved average precision
and F1 scores between 0.4 and 0.6. Noteworthy, there are two clus-
ters assigned as cell type mixtures in the benchmarked annotations
(Fig. 3e,f); for the cells in these two clusters, CELESTA-assigned cell
types were consistent with canonical marker expression patterns.
To evaluate the mismatched assignments, we built a confusion
matrix comparing the cell types between CELESTA and bench-
marked assignments (Extended Data Fig. 2). Although there is high
agreement between CELESTA and the benchmark annotations for
most cell types, we found that tumor cells assigned in the bench-
marked annotations but not by CELESTA expressed low to no cyto-
keratin, which is the tumor-specific marker defined in CELESTA’s
cell type signature matrix. CELESTA assigned the majority (around

>
>

Fig. 4 | CELESTA applied to CODEX data generated from fresh-frozen HNSCC primary tumor samples. a,b, CODEX image overlay (left) and CELESTA
(right) for a primary tumor HNSCC sample associated with lymph node metastasis (N+) (a) and not associated with lymph node metastasis (NO) (b).
Scale bars: main image and Hoechst stain, 200 pm; inset, 100 pm. ¢, Cell type compositions from scRNA-seq data (left) and CELESTA-inferred cell types
on CODEX data (middle), by HNSCC patient sample. Paired scRNA-seq and CODEX data were generated on proximal tissue sections from four patient
samples. The graph on the right shows the correlation (Pearson correlation test) between CELESTA-inferred cell compositions and scRNA-seq cell
compositions on the same four samples. d, Adjusted Rand index (ARI) to assess the performance of CELESTA against manual gating for each HNSCC
sample. Error bars indicate the s.d. calculated based on 50 runs of random sampling, and the center of the error bars indicates the mean. e, Correlation
(Pearson correlation test) between CELESTA-inferred cell compositions and manual gating compositions. f, Cell type precision score, F1 score and
accuracy score (Rand index), across six independent samples, for six cell types. Error bars are calculated using s.d., and the center of the error bars

indicates the mean. CK, cytokeratin; NK, natural killer.
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Fig. 5 | Spatial pairwise cell type co-localization analysis based on CELESTA-identified cell types in the HNSCC study cohort. a, Schematic
representation of two different pairwise cell type spatial patterns: low pairwise cell type co-localization (left) and high pairwise cell type co-localization
(right). b, Differential pairwise cell type co-location quotients (CLQs) when comparing N+ (n=4) versus NO (n=4) HNSCC samples. Volcano plot based
on nominal Pvalues from two-sided Student's t-test. ¢, Graphical illustration of inferred spatial architectural differences of cell-cell co-localizations in

NO samples (top) versus N+ samples (bottom). Created with BioRender.com. d, Representative regions of an NO sample (left) and N+ sample (right)
shown as three-color overlay images. Circled region in the right panel highlights a region with high co-localization of malignant and Treg cells in the N+
sample. Scale bars, 50 pm (0.4 pm per pixel). e, Representative regions for an NO sample (left) and N+ sample (right) shown as four-color overlay images.
The arrows highlight the regions in the right panel with high co-localization of endothelial and T cells in the N+ sample. Scale bars, 50 pm (0.4 pm per
pixel). f, Representative HNSCC TMA cores for NO and N+ patients shown as overlay images with cytokeratin and FOXP3 staining. Each TMA core is
approximately Tmm in diameter. Scale bars, 0.25mm. g, Density correlation analysis shows that cytokeratin and Foxp3 expression have a higher density
correlation in N+ patients (n=44) than in NO patients (n=32) in an independent TMA cohort of HNSCC primary samples (P=0.011, two-sided Student's
t-test). The center line of the box plot represents the median, the whiskers represent 1.5-fold the interquartile range, and the upper and lower ends of the
box plot indicate the 75th and 25th percentiles, respectively. *P< 0.05.
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80%) of these cells to the unknown category (Extended Data
Fig. 2). It is possible that cell morphology from the hematoxy-
lin-eosin images was used to identify low-cytokeratin-expressing
malignant cells in the benchmark dataset. Although the bench-
marked annotations included morphological features, CELESTA
does not use morphology in its current implementation.

We evaluated the robustness of CELESTAs performance on
the benchmark dataset. We tested the cell type signature matrix
with a leave-one-out strategy to demonstrate that CELESTA has
a low rate of misclassification (Extended Data Fig. 3). We tested
the cell type resolution strategy, and performed sensitivity tests
against user-defined parameters (Extended Data Figs. 3,4 and
Supplementary Note 2).

Comparison of CELESTA to clustering methods. We compared
CELESTA with two clustering methods, namely FlowSOM* and
flowMeans®, which are commonly used on mass cytometry data?’.
For each clustering method we varied the number of clusters (20, 30
and 50) and had two independent annotators manually assign clus-
ter cell types (Extended Data Fig. 5). Between the two annotators,
around 60% of the clusters had matched annotations. Compared
with CELESTA, both annotators labeled more cells as ‘unknown’
cell type, and CELESTA had better F1 scores, especially for the rare
populations (Supplementary Note 3).

CELESTA applied to primary HNSCC tumors imaged by
CODEX. We generated a cohort of eight primary HNSCC tumors
with four node-positive (N+) and four node-negative (N0O) sam-
ples (Supplementary Table 2). We performed CODEX imaging
using 52 markers (Supplementary Table 3) and assigned cell types
with CELESTA (Supplementary Table 4). We manually assessed
CELESTAs performance by mapping assigned cell types onto the
original images using canonical marker staining. We showed quali-
tatively that the CELESTA-assigned cell types matched well with
marker staining (Fig. 4a,b and Extended Data Figs. 6,7). We evalu-
ated cell type composition from CELESTA with paired scRNA-seq
data derived on proximal tissue sections, for four samples. Although
CELESTA cell type compositions were correlated with scRNA-seq
compositions (Fig. 4c), differences may arise because tissue dis-
sociation® in scRNA-seq data could cause immune cells to be
over-enriched.

We applied manual gating as a benchmark to quantitatively
evaluate CELESTAs performance. We designed a gating strategy
focusing on cell types relevant for downstream analysis (Extended
Data Fig. 8). Compared with gating, CELESTA achieved an adjusted

Rand index of between 0.6 and 0.9 (Fig. 4d). Due to imaging arti-
facts and lower tissue quality, cell type identification was more diffi-
cult in some samples. In terms of cell type compositions, CELESTA
and gating were highly correlated (Fig. 4e). CELESTA achieved
average F1 scores of around 0.7 and accuracy scores of around 0.9
for malignant, endothelial and T cells (Fig. 4f). For T cell subtypes,
CELESTA achieved average F1 scores of around 0.55 (Fig. 4f).

Spatial biology enabled by CELESTA. We performed spatial analy-
sis on our HSNCC cohort using CELESTA-identified cell types. We
adapted the co-location quotient” used in geospatial statistics to
quantify spatial co-localization between pairs of cell types, and tested
whether there were differential pairwise cell type co-localization
patterns in N+ versus NO HNSCC (Fig. 5a). We identified four pairs
of cell types that were significantly more co-localized in N+ than in
NO HNSCC on two-sided Students t-test (Fig. 5b), namely malig-
nant cells and T-regulatory cells (Tregs) (P=0.038), CD4+ T cells
and endothelial cells (P=0.027), CD8+ T cells and CD4+ T cells
(P=0.049), and CD4+ T cells with themselves (P=0.014) (Fig. 5¢).
Representative CODEX images show that FOXP3 (a Treg marker)
is more co-localized with cytokeratin (tumor marker) staining, and
that CD4 and CDS8 (T cell markers) are more co-localized with CD31
(endothelial marker) staining, in N+ than in NO HNSCC (Fig. 5d.e).
To validate the hypothesis of co-localization of Tregs and malignant
cells in N+ HNSCC, we stained FOXP3 and cytokeratin on a TMA
from an independent HNSCC cohort. Representative TMA images
show a stronger co-localization of malignant cells and Tregs in N+
than in NO samples (Fig. 5f), and N+ HNSCCs have significantly
higher density correlations between cytokeratin and FOXP3 than
NO HNSCCs (P=0.011, two-sided Student’s ¢-test) (Fig. 5g).

Spatially guided scRNA-seq analysis. Because crosstalk between
cells may be associated with physical proximity’>’!, we sought
co-localization patterns to guide the discovery of cell-cell cross-
talk associated with node status. We leveraged HNSCC scRNA-seq
data generated on specimens proximal to the imaged specimens
(Fig. 6a) and analyzed using Seurat’>”’. We identified a malignant
cluster (Cluster 11) in which CXCL10, a chemokine ligand, was
more expressed on N+ than on N0 HNSCC (Fig. 6b,c). We identi-
fied a Treg-enriched cluster (Cluster2) based on FOXP3 expression
(Extended Data Fig. 9), in which CXCR3, a receptor of CXCL10, was
more expressed on N+ than on N0 HNSCC (Fig. 6¢). We reasoned
that CXCL10-CXCR3 crosstalk between malignant cells and Tregs
mediated N+ HNSCC. Evidence for this interaction was found in
a public scRNA-seq HNSCC dataset™ (Extended Data Fig. 9). In a

>
>

Fig. 6 | scRNA-seq analysis guided by spatial biology reveals cell-cell interactions unique to primary HNSCC associated with lymph node metastasis.

a, UMAP (Uniform Manifold Approximation and Projection; an algorithm for dimension reduction) of identified cell type clusters using HNSCC scRNA-seq
data. b, UMAP of malignant cells (cluster 11) by node status (left) and CXCL10 expression (right). ¢,d, Violin plots showing the differential expression

of CXCL10 and CXCR3 in malignant and Treg cell clusters (c) and CCL20 in an endothelial cell cluster and CCR6 in a CD4+ T cell cluster (d) between

N+ (n=2) and NO (n=2) samples. Differentially expressed genes were identified using SAMR (Significance Analysis of Microarrays in R) and the false
discovery rate was used to adjust the Pvalues. Violin plots show density distributions of the data. Center line of the box defines median. The white box

in the center of the violin defines the interquartile range. The black line stretched above from the box defines 1.5 times interquartile range above the 75th
percentile, and the black line stretched below from the box defines 1.5 times interquartile range below the 25th percentile. e, Graphical illustration showing
the cell-cell crosstalk with identified chemokine ligand-receptor pairs mediating the cellular spatial co-localization in N+ samples. Created with BioRender.
com. f, CXCL10 expression is significantly higher (two-sided non-parametric Wilcoxon test) in the sixth generation of a lymph node tumor cell line (LN6)
in a mouse model (n=5) than in the parental (n=3) tumor cell lines (P=0.036). TPM, Transcripts Per Kilobase Million. g, Transwell experiment showing
that LN6 tumor cells attract more CXCR3+ Tregs through the membrane than parental tumor cell lines (paired t-test right-tailed, P=0.05). Tregs were
plated in the upper chambers; the bottom chambers were plated with either the parental cells (control group, n=3) or LN6 cells (study group, n=3).

h, Schematic diagram of the in vivo experiments. Created with BioRender.com. i, LN6 (n=4) tumors recruit more Tregs than parental (n=4) tumors
(paired t-test right-tailed, P=0.034). j, AMG487 treatment significantly reduces the number of Tregs recruited into the LN6 tumors (two-sided
non-parametric Wilcoxon test, P=0.029). Untreated samples, =38, and treated samples, n=7. The center line of the box plot defines the median, the top
whisker indicates the largest value within 1.5-fold the interquartile range from the 75th percentile, the bottom whisker indicates the smallest value within
1.5-fold the interquartile range below the 25th percentile, and the upper and lower bounds of the box indicate the 75th and 25th percentiles, respectively.
*adjusted P< 0.05, **adjusted P< 0.01, ***adjusted P < 0.005, ****adjusted P < 0.001.
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similar manner, we found that CCL20-CCRé6 crosstalk is higher in
N+ than in NO HNSCC, and may mediate crosstalk between endo-
thelial and CD4+ T cells in N+ HNSCC (Fig. 6d). Hence, following
CELESTA, spatial patterns guiding scRNA-seq analysis can identify
potential mediators of node status (Fig. 6e).

Functional validation of CXCL10-CXCR3 crosstalk. To validate
the association of CXCL10-CXCR3 crosstalk between malignant
cells and Tregs with node status, we leveraged a murine model of
lymph node metastasis™ developed for melanoma. In this model,
we created multiple generations of lymph node metastatic cell lines
(LN1-LNG6), with each generation exhibiting increased frequency of
lymph node metastases. RNA sequencing showed that later genera-
tions (LN6) expressed significantly higher CXCL10 than the paren-
tal line (P=0.036, Wilcoxon signed-rank test) (Fig. 6f).

We tested the hypothesis that CXCR3+ Tregs are more attracted
to CXCL10+ malignant cells in a transwell experiment in which we
found that LN6 cells induced more migration of CXCR3+ Tregs
than parental cells (Fig. 6g and Extended Data Fig. 10). This finding
supports the hypothesis that CXCR3-CXCL10 crosstalk promotes
Treg migration toward lymph node-tropic malignant cells. Given
the existence of an antagonist AMG487 blocking CXCR3 (refs =),
we compared the migration of Tregs into parental tumor versus
LN6 tumor with and without AMG487 treatment in vivo (Fig. 6h).
We found that LN6 tumors recruited more Tregs than the parental
tumors (Fig. 6i). Following AMGA487 treatment on LN6 tumors, the
number of Tregs recruited into the tumor was reduced (Fig. 6j).

Discussion

Spatial biology is a new frontier that has become accessible through
advances in multiplexed in situ imaging. Exploring this frontier
often involves converting pixel-based images into an interpreta-
ble cell-based format. This poses numerous technical challenges,
among which is cell type identification. We developed CELESTA,
an unsupervised machine learning method, for facilitating cell
type identification on multiplexed images. CELESTA can pro-
cess a tissue sample with 100,000 cells in the order of minutes on
a typical laptop.

CELESTA has several important features. To determine whether
a marker expression is high or low in a cell in a more reproduc-
ible manner than commonly used methods, CELESTA converts a
marker expression into a probability of expression and allows the
user to identify a threshold of high versus low expression. CELESTA
leverages neighborhood enrichment, which is ignored in common
cell type identification methods. Using a benchmark image dataset,
however, we show that cells with the same cell types are enriched
in each other’s nearest spatial neighborhoods. Because CELESTA
is not based on manual gating or clustering and instead assigns
the cell type to individual cells based on probabilities, it preserves
single-cell resolution in cell type assignments. CELESTA uses a cell
type resolution strategy that incorporates cell lineage information
to improve computational speed and robustness. Users define the
inputs required by CELESTA, and the effect of these inputs can be
transparently evaluated through sensitivity analyses. Although our
current analysis prioritized accuracy over the number of cells clas-
sified, the users can choose the parameters that trade-off accuracy
and quantity of cells classified. We applied CELESTA to images gen-
erated on CODEX, but CELESTA could also be extended to other
imaging platforms.

CELESTA still has several limitations. CELESTA requires seg-
mented cells as input and thereby relies on the performance of the
segmentation algorithm. For rare cell types, because their neigh-
borhoods could be enriched with a different cell type with larger
abundance, we recommend using smaller neighborhood sizes (5
cells or less). Technical artifacts from the imaging platform could
add noise to the marker expression®*’; in such cases, some manual
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intervention may still be needed after CELESTA's fast assessment.
CELESTA relies on markers in the user-defined initial cell type sig-
nature matrix. A poorly informed initial cell type signature matrix
will negatively affect the results, as would the mislabeling of a cell
cluster. In addition, too few anchor cells assigned for a cell type may
not provide sufficient spatial information to identify non-anchor
cells for that cell type. Currently, CELESTA does not account for
morphological features. Future additions to improve CELESTA
could include morphological features for each cell.

After using CELESTA for cell type identification in HNSCC
imaging, we performed spatial analysis by adapting a geospatial
statistic and identified cell type pair co-localizations of primary
HNSCC associated with node status. Integrating this analysis with
tissue-proximal scRNA-seq data, we identified CXCL10 and CXCR3
as having higher expression in malignant cells and Tregs, respec-
tively, in N+ than in NO HNSCC. This implicates CXCL10-CXCR3
crosstalk in the mediation of HNSCC lymph node metastasis, and
supports prior work associating CXCL10-CXCR3 crosstalk with
T cell trafficking and metastasis*>. Using an antagonist of CXCR3
to reduce Treg tumor infiltration, we show that the CXCL10-
CXCR3 axis is a potential therapeutic target. Our integrative spatial
and scRNA-seq analysis also identified the CCR6-CCL20 axis as
mediating immune-endothelial crosstalk in node-positive disease,
which is consistent with prior work associating this interaction with
cancer progression* .

In summary, we propose CELESTA as a fast and robust cell
type identification method for multiplexed in situ images. Using
CELESTA, we demonstrate the power of spatial biology to guide the
discovery of clinically relevant cell-cell interactions.
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Methods

CELESTA. Marker-scoring function. The marker-scoring function assesses how
well a cell's marker expression profile matches the cell type markers defined by

the cell type signature matrix. To apply the marker-scoring function, we first need
to quantify whether a marker has high or low expression in a cell. We apply a
two-mode Gaussian mixture model to fit each marker’s expressions across the cells
in a sample:

Feml) = ¢ag Comlip Za), a= {01}, A= {pp. T)m = {L,.., M} (1)

where M is total number of markers, x,, is the expression across cells for marker
m, ¢ is the mixing probabilities that sum up to 1, y is the mean and X is the
variance. Assuming that a marker with high expression is in state a=1and a
marker with low expression is in state a =0, the posterior distribution for a marker
with high expression is p(a = 1|x,,) and that for a marker with low expression is
p(a = 0]x,,). At the decision boundary we have:

p(a=1lxn) = p(a = 0lxm) @
Using Bayes’ theorem:
p(mla=1)p(a=1) =p(xula =0)p(a=0) (©)

where p (xula = 1) = g(ulp, Z1)and p (xula = 0) = glxmltg Zo). p (a = 1)
and p (a = 0) are the mixing probabilities ¢, and ¢,. By solving equation 3, we
identify the decision critical point x, at which a marker has equal probability
of high versus low expression. We use a logistic function to quantify a marker
expression probability (EP) for each marker in each cell as:

1

) T e ) v

We repeat the process for every marker; thus, for each cell, every marker
expression is converted into a probability of marker expression scaled between 0
and 1. Next, we define the cell type score F for a cell i and cell type k as 1 minus the
mean squared error between cell i’s marker expression probability profile and the
marker reference profile in the cell type signature matrix for cell type k normalized
for all cell types as follows:

M
1 2 Zik
Zg=1— — 3" (BPin — SPi)’, Fix = —ro— 5
ik M ( im km) ik Ef:l 7 (5)

m=1
where M is total number of markers, EP is the expression probability and SP is the
reference probability in the cell type signature matrix. For each cell i we calculate
the scores for each cell type k for k=1, ..., K, where K is the total number of cell
types in the cell type signature matrix in a resolution round. When a cell has one
dominant cell type score that satisfies the cell type probability threshold, and the
cell's marker expression probability satisfies the high and low expression probability
thresholds for that cell type, CELESTA assigns the corresponding cell type to that
cell and defines it as an anchor cell. For example, by setting the cell type probability
threshold as 0.5 and the high and low expression probability thresholds as 0.7 and
0.3, for a cell to be a tumor cell it needs have a marker score of 0.5 or greater in
equation 5. In addition, it needs to have a cytokeratin expression probability of 0.7
or greater, and the marker expression probability for all other measured markers
needs to be 0.3 or lower. The high and low thresholds for expression probability
provide the user with the flexibility to reduce artifacts due to, for example, doublets
or noise from non-specific staining. Once the anchor cells are identified, the cell
type signature matrix is updated to represent the average marker probabilities of
the anchor cells. The cell type signature matrix becomes updated as non-anchor
cells are assigned to specific cell types.

Markov random field. For the cells whose marker expression probability profile
is ambiguous (non-anchor cells), CELESTA is designed to maximize the

joint probability distribution using a Markov random field"® that includes a
spatial-scoring function component to account for cell spatial information and a
marker-scoring function component to account for the marker expression profile.
For non-anchor cells, we assume each cell i is a node in an undirected graph and
each cell has connected neighboring cells that are stochastically dependent. We
model the stochastic spatial dependency defined on the undirected graph G with
the edges connecting each cell to its N nearest neighboring cells. Based on the
sensitivity analysis, we recommend N=5-10. We associate each node with an
unknown state S, which is the cell type to be inferred. The spatial dependency is
modeled by a hidden Markov random field with joint probability distribution:

P(SiB) = W (B) " exp <7E SB+Y F> (6)

iel

where I is the total number of unassigned cells after anchor cell assignment, § is a
set of model parameters to be estimated, W(f) is a normalization constant, F is the
marker-scoring function and E is the spatial-scoring function defined next.

Spatial-scoring function. We use the Potts model energy function defined as:

N

Ei (sisBu) = —Pi Z 1[si = 5] @)

inj

where N is the number of nearest spatial neighboring cells of cell i based on the x
and y coordinates of the cells obtained from the image. Each time a neighbor cell
j has cell type k, the energy function is increased by 1 for the cell type k. For each
non-anchor cell i, we calculate the spatial scores for each cell type k based on its
neighborhood cell types. § is a set of model parameters that captures the distances
between cells. § is used to decide how much information to include from the
neighboring cells, and is defined as a triangular kernel multiplied by a scale factor
y as follows:

P =71 X (1 — %) for % < L. Otherwise, f; =0 (8)

where d, is the distance between unassigned cell i and its nearest cell that has cell
type k assigned, and h is a user-defined bandwidth. y is set at 5. The closer a cell

i to its nearest cell assigned to cell type k, the higher the f,. If there are no cells
of cell type k assigned within distance & to the unassigned cell, no neighborhood
information from cell type k is used. A cell could be isolated if it is too far away
from other cells with cell types identified.

Optimization of objective function for cell type identification. Because our objective
function in equation 6 is non-convex, we use a pseudo-expectation-maximization
algorithm to iteratively solve it. For each unassigned cell, we approximate

the probability of cell type k for an unassigned cell i using a mean field
approximation by:

Fix X E(sit> Bix)

— w7 VO Pk 9
S°K | Fie X E(si, By) ®

Pix

where K is the total number of cell types in the cell type signature matrix. If
multiple rounds are used with the cell type resolution strategy, K is the total
number of cell types in a round. For each cell i, the probabilities for all of the cell
types K should sum up to 1. Essentially, we approximate the probabilities of each
cell type for cell i and assign the cell type with the highest probability provided
that the cell type probability threshold is satisfied. For example, if there are four
cell types defined in a round, this probability threshold should be set higher than
0.25. We recommend that this threshold value is no greater than 0.5, otherwise it
could result in too many unassigned cells. If the cell type probabilities do not pass
the threshold then no cell type is assigned for that cell in the current iteration and
the cell is carried over to the next iteration. In the following iterations, as more cell
types are assigned, that cell may have increased neighborhood information. After
each iteration we update the cell type signature matrix $ and the neighborhood
cell types based on the newly assigned cells. The algorithm converges when the
percentage of additional assigned cells is smaller than a user-defined threshold.
The default convergence threshold is 1%. After convergence a cell is assigned to the
‘unknown’ category if it has not been assigned with a cell type.

Human tumor specimens. All patients from Stanford Hospital who were
included in the study gave consent to take part in the study with no participant
compensation following Institutional Review Board (IRB) approval (IRB protocol
no. 11402). The patient information is summarized in Supplementary Table 2.
Fresh HNSCC tissue was collected within 6h after surgical resection. A 2-3 mm
piece of tissue was cut from the sample. Samples from patients 7153 and 7155 were
immediately frozen in OCT (optimal cutting temperature) freezing media, while
the other samples were placed in 30% sucrose for 1 h at 4°C and frozen in OCT
freezing media (Fisher Healthcare) on a metal block chilled in liquid nitrogen. The
OCT samples were stored at —80 °C for CODEX processing and sequencing. The
remaining tissue was placed on ice and processed in 50 pl tissue digestion media
(DMEM-F12+ with magnesium and calcium (Corning Cellgro), 1%FBS (heat
inactivated), 10 units ml~' Penicillin-10 pg ml~! Streptomycin (Gibco), 25 mM
HEPES (Gibco)).

CODEX image acquisition and segmentation. Multiplexed CODEX analysis of
HNSCC samples was performed using a panel of antibodies (Supplementary Table
3) conjugated to custom DNA barcodes and detector oligos and common buffers,
with a robotic imaging setup, according to the instructions for CODEX staining
of frozen specimens from Akoya Biosciences (https://www.akoyabio.com/). The

7 pm sections were cut with a cryostat after the OCT blocks were equilibrated to
the cryostat temperature for at least 30-40 min. Tissue sections were placed on the
surface of cold poly-L-lysine-coated coverslips and adhered by touching a finger
to the bottom surface to transiently warm up the coverslip. Frozen sections on
coverslips can be stored at —70°C for 1-2 months. Prior to staining the sections,
frozen sections removed from the freezer were dried for 5min on the surface of
Drierite. Dried coverslips with sections on them were dipped for 10 min into room
temperature acetone, then fully dried for 10 min at room temperature (20 °C).
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Sections were then rehydrated for 5min in S1 (5mM EDTA (Sigma), 0.5% w/v
BSA (Sigma)) and 0.02% w/v NaNj, (Sigma) in PBS (Thermo Fisher Scientific),
then fixed for 20 min at room temperature (20 °C) in S1 with 1.6% formaldehyde.
Formaldehyde was rinsed off twice with S1. Sections were equilibrated in S2

(61 mM Na,HPO, « 7H,0 (Sigma)), 39 mM Na,HPO, (Sigma) and 250 mM NaCl
(Sigma) in a 1:0.7 v/v solution of S1 and doubly distilled H,O (ddH,O) with a

final pH of 6.8-7.0 for 10 min, and placed in blocking buffer for 30 min. All steps
followed the Akoya CODEX instructions. Automated image acquisition and
fluidics exchange were performed using an Akoya CODEX instrument driven

by CODEX driver software and a Keyence BZ-X710 fluorescent microscope
configured with four fluorescent channels (DAPI, FITC, Cy3, Cy5) and equipped
with a CFI Plan Apo A X20/0.75 objective (Nikon). Hoechst nuclear stain (1:3,000
final concentration) was imaged in each cycle at an exposure time of 1/175s.
Biotinylated CD39 detection reagent was used at a dilution of 1:500, and visualized
in the last imaging cycle using DNA streptavidin—phycoerythrin (1:2,500 final
concentration). DRAQ5 nuclear stain (1:500 final concentration) was added and
visualized in the last imaging cycle. Each tissue was imaged with a X20 objective in
a7x9 tiled acquisition at 1,386 X 1,008 pixels per tile and a resolution of 396 nm
per pixel, with 13 z-planes per tile (axial resolution 1,500 nm). Images were chosen
with the best focus from the z-planes, and out-of-focus light was removed using
deconvolution. Acquired images were preprocessed (alignment and deconvolution
with Microvolution software http://www.microvolution.com/) and segmented
(including lateral bleed compensation) using a publicly available CODEX image
processing pipeline available at https://github.com/nolanlab/ CODEX.

Manual assessment of CELESTA performance on the HNSCC cohort.
CELESTA performance on the HNSCC cohort was assessed manually by

mapping CELESTA-assigned cell types onto the original images using the x and

y coordinates with the Image] plugin from https://github.com/nolanlab/ CODEX
(Extended Data Figs. 6 and 7). For each cell type, CELESTA-assigned cells were
plotted as yellow crosses on the canonical marker staining images. Marker staining
was shown as a white signal on a black background. Key marker staining for each
cell type is shown in Extended Data Figs. 6 and 7. Assessment for each cell was
defined as positive canonical marker signals for that cell type.

Manual gating of the HNSCC cohort. The segmented dataset was uploaded onto
the Cytobank analysis platform and transformed with an inverse hyperbolic sine
(cofactor of 5). The gating strategy was as follows: cells were defined using DRAQ5
nuclear expression and size, followed by endothelial (CD314) and malignant

cells (cytokeratin4). CD4+ T cells (CD4+ CD8— CD3+ CD31— cytokeratin—),
CD8+ Tcells (CD8+ CD4— CD3+ CD31- cytokeratin—) and Tregs (FOXP3+
CD25+ CD4+ CD8— CD3+ CD31- cytokeratin—) were defined. To adjust for

the variability between sample image collection, each gate was tailored to each
individual sample.

Spatial co-localization analysis. We used the co-location quotient to identify cell
spatial co-localization. By denoting cell type a as the target cells and cell type b

as the neighboring cells, the co-location quotient shows the degree to which cell
type b co-locates spatially with cell type a as a ratio of the observed to the expected
number of cell type b among the set of nearest neighbors of cell type a, defined as:

Cbaa/Na

R VL]

(10)

where C is the number of cells of cell type b among the defined nearest neighbors
of cell type a. N is the total number of cells and N, and N, are the numbers of cells
for cell type a and cell type b. Cell types with fewer than 20 cells were excluded
for each sample. We calculated the co-location quotient for the pairwise cell types
identified, and compared the co-location quotients for each pair between N+ and
NO samples.

HNSCC Tumor tissue dissociation. Tumor tissue was thoroughly minced

with a sterile scalpel and placed in a gentleMACS C-tube (Miltenyi Biotec)
containing 1.5ml tissue digestion media. Tissue was mechanically digested on

the GentleMACS dissociator five times under the human tumor tissue program
h_tumor_01. Tissue was filtered with a 40 pm nylon cell strainer (Falcon) into a
14 ml tube that was then filled up to 14 ml with tissue digestion media and spun at
4°C for 10 min at 514 r.c.f. The mechanically digested cell pellet was re-suspended
for 2min on ice in 1-4ml ACK (ammonium-chloride-potassium) lysis buffer
(Gibco) depending on the pellet size and number of red blood cells present. Cells
were filtered with a 40 pm nylon cell strainer (Falcon) into a 14 ml tube that was
then filled up to 14 ml with FACS buffer (PBS without calcium or magnesium
(Corning), 2%FBS (heat inactivated), 10 units ml~' Penicillin-10 pg ml~!
Streptomycin (Gibco) and 1 mM Ultra Pure EDTA (Invitrogen)) and spun at 4°C
for 10 min at 514r.c.f. Cells were washed one more time with FACS buffer and
re-suspended in 25 pl FACS buffer. Solid tissue in the strainer was collected and
placed back in the C-tube with 2 ml tissue digestion media of 1 ml 3,000 U ml~!
collagenase/1,000 U ml™" hyaluronidase (StemCell Technologies) and 1 ml 5Uml™!
dispase (StemCell Technologies). The solid tissue in the C-tube was incubated at
37°C on a rotator for 1h, and then filtered with a 40 pm nylon cell strainer (Falcon)
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into a 14 ml tube that was then filled up to 14 ml with tissue digestion media and
spun at 4°C for 10 min at 514 r.c.f. The enzymatically digested cell pellet was
re-suspended in 1-4 ml ACK lysis buffer (Gibco) (depending on the pellet size
and number of red blood cells present) for 2 min on ice. Cells were filtered with a
40 pm nylon cell strainer (Falcon) into a 14 ml tube that was then filled up to 14 ml
with FACS buffer (PBS without calcium or magnesium (Corning), 2%FBS (heat
inactivated), 10 units ml~' Penicillin-10 pg ml~" Streptomycin (Gibco) and 1 mM
Ultra pure EDTA (Invitrogen)) and spun at 4 °C for 10 min at 514r.c.f. Cells were
re-suspended in FACS buffer, counted on a hemacytometer and washed one more
time with FACS buffer. Cells were kept in FACS buffer on ice until flow cytometry
staining. The sorting panel is listed in Supplementary Table 5.

Single-cell RNA sequencing. RNA and library preparations were performed
according to the 10x Genomics v2.0 handbook. Single cells were obtained from
tissue dissociation. Cells were stained with 4',6-diamidino-2-phenylindole
dihydrochloride (DAPI) for live-dead detection and sorted for up to 500,000
live cells on a BD Aria II. Cells were counted after sorting and before 10x chip
preparation. The 10x/Abseq (BD Biosciences) library preparation followed the
same protocol as the 10x Genomics samples except the addition of Fc Block and
Abseq antibody staining according to the manufacturer’s handbook. Reads were
aligned using CellRanger. Preprocessing, data normalization and batch correction
were done following the Seurat SCTransform integration pipeline. Cells were
clustered by shared nearest neighbor modularity optimization. The cell types
present were identified using canonical markers.

HNSCC tissue microarray. Formalin-fixed paraffin-embedded tissue blocks of
HNSCC from 79 patients were pulled from the Stanford Health Care Department
of Pathology archives. The area of malignancy was marked by a board-certified
pathologist (C.S.K.). The TMA was constructed from 1-mm-diameter cores
punched from the tissue blocks. The 4-pm-thick sections were stained with
hematoxylin and eosin, FOXP3 (clone 236A/E7, 1:100 dilution; Leica BOND
epitope retrieval solution 2) and cytokeratin mix (AE1/AE3, 1:75 dilution and
CAMS5.2, 1:25 dilution; Ventana Ultra; protease retrieval). The slides were digitized
using a Leica whole-slide scanner with x40 magnification. Three samples with
unknown node status were excluded from analysis. To assess the co-localization

of FOXP3 and cytokeratin immunohistochemistry staining, the whole-slide
images were dearrayed to obtain each core image. We ran color deconvolution to
quantify DAB staining using the scikit-image package in Python. We thresholded
the staining based on pixel intensity distributions of the DAB staining to quantify
the positively stained pixels in the images. We used a sliding window of 100 x 100
pixels to quantify the positive pixel densities for cytokeratin and FOXP3 in each
window and moved the sliding window to cover the whole core area. We correlated
the densities of cytokeratin staining and FOXP3 staining across the whole core
area for each sample. We then compared the density correlations between the NO
and N+ samples.

Statistical analysis and figure creation. Statistical analyses were performed

and the corresponding figures were generated in R or Python. Student’s ¢-test

was used for comparisons of co-location quotient and comparisons of TMA
density correlation between HNSCC N0 and N+ samples. For in vitro and in vivo
functional experiments the non-parametric Wilcoxon rank-sum test was used for
comparisons. In addition, when comparing paired conditions with equal sample
sizes, we used the paired ¢-test. For multiple testing of differentially expressed
gene expressions in sScCRNA-seq data, the permutation test (SAMR)*” was used, and
the false discovery rate was used to adjust the Pvalues. Results were considered
statistically significant for P<0.05 or adjusted P <0.05 for multiple testing.

For cell neighborhood enrichment analysis (Extended Data Fig. 1a), for the
five nearest neighbor cells for each cell, the number of cells of each cell type was
calculated and the observed total number of cell types in the neighborhood of
another cell type could be calculated. Using 1,000 permutations of the cell labels,
the distribution of the randomly expected number of neighboring cells for each
cell type could be constructed, and a right-tailed Pvalue was used to confirm that
the observed number was larger than 95% of the randomly expected number for
enrichment. The Benjamini-Hochberg procedure was used to adjust the Pvalues.
A statistically significant neighborhood enrichment of cells was confirmed when
both the Pvalue and the adjusted Pvalue were less than 0.05.

For the public colorectal cancer dataset the ground truth was defined using
the published annotations. For the HNSCC study cohort dataset the ground
truth is defined using manual gating. For the public colorectal cancer dataset, cell
types with fewer than 5 cells in a sample region in the annotations were excluded.
For each cell type, the true positive (TP) is the number of cells assigned by both
CELESTA and the ground truth benchmark, the false positive (FP) is the number
of cells assigned by CELESTA but not by the ground truth benchmark, the false
negative (FN) is the number of cells assigned by the benchmark but not by
CELESTA, and the true negative (TN) is the number of cells not assigned by both
CELESTA and the benchmark. For the HNSCC cohort the adjusted Rand index
was calculated using the adjustedRandIndex function in the R package mclust.
Precision is defined as TP/(TP + FP), and recall is defined as TP/(TP +FN). F1
score is defined as 2(precision X recall)/(precision + recall). The Rand index, a
measure of accuracy, is defined as (TP +TN)/ (TP + TN +FP+FN).
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Parts of Figs. 5 and 6 were created using the Biorender online tool (https://
biorender.com). Multichannel overlay images were created using Image].

Cell lines and animals. Cells were cultured in DMEM supplemented with 4mM
L-glutamine, 10% FBS and 1% Penicillin Streptomycin. The tumor lines were
routinely tested for Mycoplasma using polymerase chain reaction, and all tests
were negative. All animal studies were performed in accordance with the Stanford
University Institutional Animal Care and Use Committee under protocol APLAC-
17466. All mice were housed in an American Association for the Accreditation

of Laboratory Animal Care-accredited animal facility and maintained in specific
pathogen-free conditions.

Transwell migration assays. FoxP3*%"* mice* were acquired from The Jackson
Laboratory (catalog no. 006772) and bred at Stanford University. Splenocytes were
collected from tumor-naive female FoxP3 " mice. All studies were performed

in female mice between 7 and 9 weeks of age. Mice were housed in facilities
maintained at a temperature of 18-24°C, with humidity between 40% and 60% and
with 12-12 light-dark cycles (07:00-19:00 hours). Spleens underwent mechanical
dissociation on 70 pm cell strainers and were washed with HBSS supplemented
with 2% FBS and 2mM EDTA (HBSSFE). Erythrocytes were lysed with ACK.
Magnetic isolation of Tregs was performed using the EasySep Mouse CD25
Regulatory T cell Positive Selection Kit (StemCell, catalog no. 18782) according to
the manufacturer’s instructions. Tregs were cultured in RPMI-1640 supplemented
with 10% FBS, 2mM L-glutamine, 15 mM HEPES, 14.3 mM 2-mercaptoethanol,

1 mM Sodium Pyruvate, 1X MEM Non-Essential Amino Acids Solution and 300IU
hIL-2 (Peprotech) for 72 h.

Tumor cell line suspensions were prepared by washing with PBS followed by
treatment with StemPro Accutase (Thermo, catalog no. A1110501). A total of
10° tumor cells were plated in the bottom chamber of the 24-well transwell plates
24h prior to the assay. The 5 pm transwell membranes (Costar, catalog no. 3421)
were incubated in complete RPMI for 24 h prior to the assay. Membranes were
transferred to the tumor-containing wells and suspensions of 5x 10* Tregs were
added to the top chambers of the transwells. Cells were cultured for 2h at 37°C
in 5% CO,, after which the membranes were removed, and cells from the bottom
chamber were processed for analysis by flow cytometry.

Cell suspensions were washed in HBSSFE and stained with the following
antibodies: Mouse Fc Block (BD, 2.4G2, 553142, 1:200), CD4 (BioLegend, RM4-5,
100563, 1:200), CD25 (BioLegend, PC61, 102026, 1:75), and CXCR3 (BioLegend,
CXCR3-173, 155906, 1:100). DAPI was used to stain for viability. Samples were
run on an LSRFortessa cytometer (Becton Dickinson) and analyzed using FlowJo
V10 (TreeStar).

In vivo Treg tumor infiltration. Experiments were performed using either
C57NL/6] (The Jackson Laboratory, catalog no. 000664) or FoxP3*S™ (The Jackson
Laboratory, catalog no. 006772) female mice housed in our facility at Stanford.
B16-F0 or LN6-987AL tumor cells were washed with PBS and dissociated from
tissue culture plastic with StemPro Accutase (Thermo, catalog no. A1110501).

Cell suspensions of 2 x 10° cells in phenol-red free DMEM were injected into the
subcutaneous region of the left flank of 9-week-old female mice (The Jackson
Laboratory, catalog no. 000664) following removal of fur with surgical clippers.
After 15 days of tumor growth the mice were euthanized and their tumors were
processed for analysis by flow cytometry.

Tumors were weighed followed by digestion in RPMI-1640 supplemented with
4mgml~" Collagenase Type 4 (Worthington, catalog no. LS004188) and 0.1 mgml!
Deoxyribonuclease I (DNAse I, Sigma, catalog no. DN25) at 37 °C for 20 min with
agitation. Tumors were then dissociated on 70 pm strainers, washed with HBSSFE
and stained for viability using LIVE/DEAD Fixable Blue Dead Cell Stain (Thermo,
catalog no. L34962). Surface proteins were stained, samples were fixed and
permeabilized using the eBioscience FoxP3 Fixation/Permeabilization kit (Thermo,
00-5521-00), and intracellular FoxP3 was stained. The following antibodies were
used: Mouse Fc Block (BD, 2.4G2, 553142, 1:200), CD4 (BioLegend, RM4-5,
100563, 1:200), CD8« (BioLegend, 53-6.7, 100750, 1:200), CD3 (BioLegend, 17A2,
100237, 1:75), CD25 (BioLegend, PC61, 102026, 1:75), B220 (BioLegend, RA3-6B2,
103255, 1:200), CD45.2 (BioLegend, 104, 109806, 1:100) and FoxP3 (Thermo/
eBiosciences, NRRF-30, 12-4771-82, 1:20). AccuCount fluorescent particles
(Spherotec, catalog no. ACFP-50-5) were added to each sample to determine
absolute cell counts. Samples were run on an LSRFortessa cytometer (Becton
Dickinson) and analyzed using FlowJo V10 (TreeStar).

For CXCR3-blockade studies, LN6-987AL cells were prepared as above and
injected into 7-week-old FoxP3E** mice. Mice were treated with AMG487 (R&D
Systems, catalog no. 4487) at 5mgkg™" every 48 h starting on day 1 following tumor
implantation. After 9 days of tumor growth the mice were euthanized and their

tumors were processed for analysis by flow cytometry (BD FACS Diva 8.0.2) as
described above.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

The scRNA-seq data are deposited at GEO: GSE140042. HNSCC imaging data are
hosted at Synapse.org SageBionetworks at https://doi.org/10.7303/syn26242593.
The benchmark public imaging data can be found at https://doi.org/10.7937/
tcia.2020.fqn0-0326. Source data are provided with this paper.

Code availability

All codes related to CELESTA can be found at https://github.com/plevritis/
CELESTA. The source codes are also hosted at Code Ocean at https://doi.
0rg/10.24433/C0.0677810.v1 (ref. ).
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Extended Data Fig. 1| Neighborhood enrichment analysis, expression distributions of protein markers and illustration of final updated prior knowledge
cell type signature matrix. (a) Cell neighborhood enrichment analysis using Schurch et al.° cell type annotations. Red versus blue indicates that cells of a
given cell type (columns) are significantly enriched versus are not enriched, respectively, in the 5-nearest neighborhood of a cell type of interest (rows).
Cells of the same or similar cell type are enriched in each other’s neighborhoods. Statistical significance is determined with p-value right tail < 0.05 and
Benjamini-Hochberg adjusted p-value < 0.05. Legend for cell count indicates the number of cells below 2,000, (2,000-4,000), (4,000-6,000), (6,000-
8,000) and over 8,000 for each cell type across the 70 samples. (b) Histograms of protein expressions in a representative sample. Red curves illustrate
fitted bimodal Gaussian mixture model. The protein expression levels were ArcSinh transformed. (c) lllustration of final updated prior knowledge cell type
signature matrix on a representative sample from Schurch et al. data. The initial user-defined cell type signature matrix is shown in Supplementary Table
1. There were no NK cells identified in this sample, and thus information on NK cells is not updated in the cell type signature matrix. White to red color
indicates values from O to 1. Gray color indicates NA values.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Comparison between CELESTA and Schurch et al.® annotations on the colorectal cancer dataset. (a) Confusion matrix for

each cell type identified by CELESTA (rows) versus Schurch et al.° (column) for 70 samples. White to red color indicates values from low to high.

(b) Nuclei staining for sample core 032. (c) Cytokeratin staining for sample core 032. (d) Tumor cells identified by Schurch et al. (yellow crosses) overlaid
on cytokeratin staining for sample core 032. (e) Tumor cells identified by CELESTA overlaid on cytokeratin staining for sample core 032. (f) Average
canonical cell type marker expressions across all the 70 samples on cells identified to be tumor cells by (i) both CELESTA and Schurch et al. (black),

(i) only CELESTA (orange), and (iii) only Schurch et al. (blue). (g) Similar to (f) but with error bars indicating 95% confidence interval based on sampling
the same number of cells from each category across n=70 samples and center values indicate mean values.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Testing leave-one-out marker and cell type resolution strategy and sensitivity analysis of user-defined parameters
(hyperparameters) in CELESTA using the Schurch et al.® dataset. (a) Assigned cell type proportions for testing of different cell type signature matrices
with each time leaving one cell type marker and corresponding cell type out. (b) Comparison of CELESTA's performance with (yellow) and without
(purple) cell type resolution strategy. (c) Average numbers of neighboring cells as a function of the bandwidth parameter across n=70 samples. Error
bar indicates standard deviation, and center value indicates mean values. (d) F1 score as a function of the number of nearest neighbors. Left panel: major
cell populations. Right panel: cell types with smaller populations. (e) Effect of different values for the threshold of high marker probability expression. Left
panel: Number of cells assigned to unknown cell types as a function of the threshold for high marker probability expression. Middle panel: F1scores as a
function of the threshold for high marker probability expression, for major cell types. Right panel: F1 scores as a function of the threshold for high marker
probability expression, for cell types with smaller populations.
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Extended Data Fig. 4 | Comparison of expression probabilities versus original staining across a representative sample. Expression probability for a given
marker for each cell CELESTA (left) compared to marker staining on the original image (right). For the CELESTA result, the marker expression probability is
shown at the XY coordinates of the cell, where the XY coordinates represents the cell's center; marker expression probabilities are color-coded for values
over 0.5 in light blue to over 0.9 in dark blue. Markers illustrated are: (a) aSMA, a mesenchymal marker, (b) cytokeratin, a tumor marker and (c¢) CD31, an
endothelial marker.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Analysis of two different clustering-based methods (namely, flowMeans and FlowSOM) used to assign cell types on the Schurch
et al.° dataset. (a) Heatmaps of cluster marker expressions on different numbers of clusters (n=20, 30, 50) with two independent annotators (Annol
and Anno?2) to assign cluster cell types based on manual assessment of cluster protein marker expressions; light green indicates matched annotations and
dark green indicates mismatched annotations. (b) Percentage of matched cluster annotations between the two annotators as a function of the number

of clusters, for two different clustering methods. (c¢) Number of cell types identified by the two annotators as a function of the number of clusters, for the
two different clustering methods. (d) The percentage of cells assigned to unknown cell types with CELESTA and the two different clustering methods, as

a function of the number of clusters and the annotator. (e) F1scores per cell type, comparing CELESTA and cell type assignments from the two annotators
using the two different clustering methods, where annotations from Schurch et al. are used as ground truth. Abbreviations: Anno1 for Annotator 1; Anno2
for Annotator 2.
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Extended Data Fig. 6 | Visual assessment of CELESTA's performance for a representative HNSCC sample. (a)-(f) Identified cells are shown as yellow
crosses using the x and y coordinates overlaid on canonical marker staining (white) CODEX images. For each cell type, nuclei staining and three example

markers (positive and negative) important for the cell type are shown. Cell types shown (a)-(f): malignant cells, endothelial cells, fibroblast cells, B cells,
NK cells, plasmacytoid dendritic cells.
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Extended Data Fig. 7 | Additional visual assessment of CELESTA's performance for a representative HNSCC sample. (a)-(f) |dentified cells are shown
as yellow crosses using the x and y coordinates overlaid on canonical marker staining (white) CODEX images. For each cell type, nuclei staining and three
example markers (positive and negative) important for the cell type are shown. Cell types shown (a)-(f): T cells, conventional dendritic cells, neutrophils,
CD8+T cells, CD4+T cells, Treg cells.

NATURE METHODS | www.nature.com/naturemethods


http://www.nature.com/naturemethods

ARTICLES NATURE METHODS

Malignant cells '_>

- 88 a3 T o
7233 o ndofnela CDa+ T cells
U
-
2 Q2 o
3o’ g X & w3
Teels © CD4 & CD8- - cog+ O 3
1 !
10 Tcells T cells ! =
-q 3
u' w0
i ut |n|llmqlllnlllq'zllllniI‘fl'lu 2 Ty
w ot w0 w 10
CD3 CD8
7238 10t 1t E u* E
E fiothelial 7 3
3 s 3 o
' g < ' g E
] = E E
S w® g e 2 < g . s 0 g
E 5 a3 + A 3
a5 3 g 8 Tcells O 1] CD4 & CDg- Tcells o 1
g 3 wt g Teells ' g
E o E E
n" 4 ' w0
LRLLL BRI Rl Rl IRLLL AL Rl
Wt W T R U U w oot wWowt W W W W owt o @
size CD31 cD8 FOXP3
Malignant cells
7240  *'% e
E Endpthelial 3 E Treg
' g ' g u' g cells
0 3 £ 3 3
g, ] g 2 E o 2]
2 o € 2 E
Sty s 3 3% ¥ opsacos coar 5 3
E 3 cells 3
[a] o g o Teells O o ] T cells o o
© . —t—p 3 E
" 10" - 1"
RALLImELL et e
W ow o w ot w ot w0 ot o w wt w w0 W
size CcD31 cD3 cD8 FOXP3
Malignant cells
4
7267 u" g . CD4+ T cells u
.3 ) 1 Treg
" w _%I c w 3 cells
E = 3
% w* g E’ = § w* g
a 7 2 Teels O o o 3
1 o 3
u' g 3 W F Ccpascos Cbss o' 3
3 3 T cells E|
3 = Tcells =
1 u' w0
....... | |||I||| ||||l||| TT
w' ow o w owt w' ot o W wt W ot oW o ut
size CD31 CD3 CD8
Malignant cells N
7268 u' ' w3
5 c 3
0 E £ 3
g 21 s CD8+ Q@ 1* 3
w3 k] Teels O = 3
a 3 S o 3
1o = w g
w' g &) E
w7 u"

4 7 w3
7275 1 ? thelial CD4+T cells- ;
o 1 ‘ w3
= c N 3
wn 3 = 3 3
e} E T 2 . CD8+ 1
g 23 Sy 3 CD4 & CD8 Tools w11
o 3 X o Tcells 8 =
] E g N T cells O 1]
o g 3w _ ) 10 w' g
E o ]
u° ] 1 1
| ||||||| |||||||| |||||||| TTTIm
W W W P ot w ot w owt oW ow ot w w0t W ot
size CD31 CD8 FOXP3

Extended Data Fig. 8 | Gating strategies on the head and neck squamous cell carcinoma (HNSCC) samples. Gating strategies used to identify key cell
types relevant to the HNSCC study including malignant cells, endothelial cells and subtypes of T cells.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Additional scRNA-seq analysis of primary HNSCC samples and scRNA-seq analysis using public domain data from Puram et al.
(2017)“. (a) UMAP plot of identified cell clusters with node status on the study HNSCC cohort. (b)-(c) UMAP plots highlighting expression of FOXP3,
IL2RA, CXCR3, CD4 and CD8A. (d) CXCR3 expression in different T cell clusters showing that CXCR3 is differentially expressed in NO (n=2) versus

N+ (n=2) samples only in the Treg cells. (e) Violin plot of STAT1 expression in the Treg cluster between N+ (n=2) and NO (n=2) samples. STAT1is a
CXCR3 inducer. (f) Violin plot of CXCL9 and CXCL11 in the malignant cell cluster between N+ (n=2) and NO (n=2) samples. CXCL9 and CXCL11 are
both ligands of CXCR3, but they are not differentially expressed in our data. (g) Heatmap shows expressions of CD274 (PD-L1), MUC1, EMT markers
(CDH1 and VIM) and stemness markers (CD44 and CD24). (h) UMAP of identified cell clusters using the Puram et al. dataset. (i) UMAP of identified cell
type clusters with node status color-coded. (j) UMAP plots of CD4, CD8A, and FOXP3. (k) UMAP plot of CXCR3. (I) Violin plots of CXCR3 in the T cell
clusters between N+ (n=12) and NO (n=6) samples. (m) Violin plot of CXCL10 in malignant cell cluster O between N+ (n=12) and NO (n=6) samples.
Differentially expressed genes were identified using SAMR and false discovery rate was used to adjust p-values. Center line of box plot defines data
median, top value indicates largest value within 1.5 times interquartile range above 75" percentile, bottom value indicates smallest value within 1.5 times
interquartile range below 25" percentile, and upper and lower bounds of the box plot indicate 75t and 25 percentile respectively. *: adjusted p-value <
0.05, **: adjusted p-value < 0.01, ***: adjusted p-value < 0.005, ****: adjusted p-value < 0.001.
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Extended Data Fig. 10 | Gating strategies used for mouse model studies. Gating strategies used to study CXCL10-CXCR3 crosstalk between malignant
and Treg cells in the functional studies.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

X] A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

XX X

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

OXX O OO0 000F%
X

X OO X

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Single-cell RNAseq data were collected using standard 10x platform. CODEX imaging data were collected following Akoya Biosciences CODEX
solution platform. Flow cytometry data were collected using BD FACS Diva 8.0.2.

Data analysis Single-cell RNAseq preprocess and integration tool used Seurat v.3. CODEX imaging preprocessing used: Akoya Biosciences CODEX solution
and custom tools at https://github.com/nolanlab/CODEX, and deconvoluted with commercial Microvolution software http://
www.microvolution.com/. Cell type identification source code and package are deposited at GitHub: https://github.com/plevritis/CELESTA.
Flow cytometry data were analyzed using FlowJo v10.0.8.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

The single cell RNA-seq data are deposited at GEO: GSE140042. Imaging data are hosted at Synapse.org at https://doi.org/10.7303/syn26242593. The benchmark
public imaging data can be found at https://doi.org/10.7937/tcia.2020.f{qn0-0326.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size For human work, we generate data on single cell platforms (over 100K cells) for hypothesis synthesis. We used sample sizes comparable to
other publications, where in our case 4 patients with lymph node metastasis(N+) and 4 patients without lymph node metastasis(NO) to
provide proper sample size for two-sided t-test in the imaging spatial hypothesis generation. For tissue microarray (TMA) validation, we have
76 independent patient samples, which are comparable with common TMA sample size. Within the TMA, we have (n=44) N+ samples and
(n=32) NO samples to provide sufficient sample size of each condition for the validation. For mouse functional validation studies, in vitro trans-
well experiment has paired setup for each condition, and each condition has three samples for paired t-test. For in vivo study, there are
treated samples (n=7) and untreated samples (n=8) by AMG487, and the sample size was chosen to provide proper sample size for non-
parametric test and suitable for estabilishing in vivo experiments.

Data exclusions  No data were excluded.

Replication No replication in hypothesis generation. Validation was done on different data cohort with different platform and mouse model.

Randomization  The groups were based on patient nodal status or different generations of mouse cell lines. To randomize mice between groups, tumor cells
representing different conditions were injected in an alternating fashion, and mice from the different conditions were co-housed within the
same cages. Ear tags were used to subsequently determine which mice were from which groups.

Blinding The investigators collected the tissue samples with known patient information (nodal status, gender, age etc.) to allow comparisons for

different nodal status of patients as well as to ensure that the covariates were properly accounted for in the analysis. The investigators were
blinded with other information in tissue and data collection.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
Materials & experimental systems Methods

Involved in the study n/a | Involved in the study

| Antibodies |Z |:| ChiP-seq

<{| Eukaryotic cell lines |:| Flow cytometry

Palaeontology and archaeology |Z |:| MRI-based neuroimaging
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Animals and other organisms
Human research participants
Clinical data

Dual use research of concern
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Antibodies

Antibodies used Imaging panel is mainly following Akoya Biosciences Inc (https://www.akoyabio.com/). From Akoya project list: CD19 (HIB19,
4350003), CD31 (WM59,4250009), CD7 (CD7-6B7,4450022),CD21 (Bu32, 4150009), CD3 (UCHT1,4350008) ,CD4 (SK3,4350010),
CD69 (FN50,4250022), CD2 (RPA-2.10, 4250005), CD45 (H130,4150003)

, CD8 (SK1,4150004), CD11c (S-HCL3,4350012), CD38 (HB-7, 4150007), CD9 (HI9a, 4150016), CD5 (UCHT2,4350011), HLA-DR (L243,
4250006), Ki67 (B56,4250019), PD1 (EH12.2H7, 4250010), Cytokeratin (AE-1/AE-3, 4450020),CD90 (5E10,4150021). From Akoya
screening list of antibodies: CD15 (H198,301902,Biolegend), CD36 (CB38,555453, BD), CD123 (6H6, 14-1239-82,Thermo), CD152
(BNI13,369602, Biolegend), CD57 (HNK1, 359602, Biolegend), CD54 (HA58, 353102,Biolegend), CD273 (24F.10C12

329602, Biolegend), HLA-ABC (W6/32, 311402, Biolegend). For more information on self-antibody conjugation protocol, please refer
to Reference 15. For FACS analysis: CD45 (2D1, 368508, Biolegend), CD19 (HIB19, 302206, Biolegend), CD68 (Y1/82A, 333806,
Biolegend), CD3 (HIT3a,300306, Biolegend), CD31 (WM59, 555446, BD), CD140a (16A1, 323506, Biolegend), FAP (427819, FAB3715A,
Biolegend), DAPI (422801, Biolegend). For flow cytometry analysis of mouse studies, the following antibodies were used:

Trans-well studies: Mouse Fc Block (BD, 2.4G2), CD4 (BioLegend, RM4-5), CD25 (BioLegend, PC61), and CXCR3 (BioLegend,
CXCR3-173). In vivo studies: Mouse Fc Block (BD, 2.4G2), CD4 (BioLegend, RM4-5), CD8a (BioLegend, 53-6.7), CD3 (BioLegend, 17A2),
CD25 (BioLegend, PC61), B220 (BioLegend, RA3-6B2), CD45.2 (BioLegend, 104), and FoxP3 (Thermo/eBiosciences, NRRF-30)
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Validation CODEX imaging requires antibodies conjugated to custom DNA barcodes and detector oligos as well as common buffers for CODEX
staining of frozen specimen following instructions from Akoya Biosciences (https://www.akoyabio.com/). Antibodies are also verified
via immunofluorescence staining on appropriate tissues to determine protein abundance and efficacy when compared to current
literature and online databases (The Human Protein Atlas). For more information on self-antibody conjugation protocol, please refer
to Reference 15.

Validation for the various antibodies used in the mouse studies is provided by the manufacturers' websites (http://
www.bdbiosciences.com/us/home, https://www.biolegend.com/, https://www.thermofisher.com/antibody/product/FOXP3-
Antibody-clone-NRRF-30-Monoclonal/12-4771-80). No additional validation of antibodies was performed by the investigators.
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Cell line source(s) B16-FO cells were acquired from ATCC (CRL-6322, Lot # 58254426), LN6-987AL cells were generated in our lab

Authentication B16-FO cells were cultured directly from the ATCC lot listed above. These cells are not listed as a misidentified cell line by
ATCC.

Mycoplasma contamination All lines were routinely tested for mycoplasma throughout this study by PCR (abm, G238). All samples tested negative.

Commonly misidentified lines  No commonly misidentified lines were used in these studies.
(See ICLAC register)

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Mouse, strains C57BL6/J (000664) and FoxP3-EGFP (006772) mice were acquired from Jackson. All studies were performed in female
mice between 7 to 9 weeks of age. Mice were housed in facilities maintained at temperatures between 65-75 degrees Fahrenheit,
with humidity between 40-60% and subjected to 12/12 light/dark cycles (7am to 7pm).

Wild animals No wild animals were used in these studies.

Field-collected samples  No field-collected samples were used in these studies.

Ethics oversight All animal studies were performed in accordance with the Stanford University Institutional Animal Care and Use Committee under
protocol APLAC-17466.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Outcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Flow Cytometry

Plots

Confirm that:
|Z| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Tumors were weighed followed by digestion in RPMI-1640 supplemented with 4mg/mL Collagenase Type 4 (Worthington,
L5004188) and 0.1mg/mL Deoxyribonuclease | (DNAse |, Sigma, DN25) at 37°C for 20 minutes with agitation. Tumors were
then dissociated on 70um strainers, washed with HBSS supplemented with 2% FBS and 2mM EDTA, and stained for viability




Instrument
Software

Cell population abundance

Gating strategy

using LIVE/DEAD Fixable Blue Dead Cell Stain (Thermo, L34962). Surface proteins were stained, samples were fixed and
permeabilized using the eBioscience FoxP3 Fixation/Permeabilization kit (Thermo, 00-5521-00), and intracellular FoxP3 was
stained. 5x1073 AccuCount Fluorescent particles (Spherotec, ACFP-50-5) were added to each samples for the purposes of
determining absolute cell counts.

BD LSRFortessa X-20

Data collected with FACS Diva v8.0.2; Data analyzed with FlowJo v10.0.8

Cell population abundance in mouse tumors was determined using AccuCount Fluorescent particles, as described above. Cell
numbers were calculated by multiplying events measured by the ratio of particles measured over the total particles added

(5x1073/sample). Normalization to tumor weight was performed by measuring tumor weight prior to dissociation.

Gating strategies are depicted in the Extended Data Fig.10. Briefly, cells are gated (from debris) based on FSC and SSC.
Singlets are gated by FSC-A vs. FSC-H. Live cells are gated as Live-dead blue or DAPI negative.

|Z Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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