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Despite high rates of initial responses to frontline treatment, can-
cer mortality largely results from relapse or metastasis. Although 
there is debate as to whether resistant cancer cells are present at the 
time of initial diagnosis or whether they emerge under the pres-
sure of therapy, many studies have suggested that it is the former1–4. 
Such cells can be rare and are not accurately represented in animal 
models or patient-derived xenografts5,6. Hence, the identification 
and study of the cellular species underlying cancer persistence will 
require both high-throughput single-cell analyses of primary human 
tissues and new analytical tools to align these rare populations with 
clinical outcomes.

B cell precursor acute lymphoblastic leukemia (BCP-ALL) is a 
common childhood malignancy. Despite dramatic improvements 
in survival using current treatment regimens, relapse is the most 
frequent cause of cancer-related death among children with BCP-
ALL7. BCP-ALL is characterized by the clonal proliferation of blast 
cells that bear the hallmarks of immature B cells in the bone marrow 
(BM) and/or peripheral blood. Known molecular alterations stall the 
development of B lymphocytes (B lymphopoiesis) in individuals with 
BCP-ALL8–12.

Healthy B lymphopoiesis occurs through sequential developmental 
stages that are marked by losses and appearances of surface proteins, 
intracellular mediators of DNA rearrangement, and activation of 
signaling pathways that regulate decisions of cell fate13,14. We previ-
ously applied single-cell mass cytometry (also known as ‘cytometry 
by time-of-flight’ or CyTOF) analysis to align developing B cells into 
a unified trajectory, which enabled us to better define human pre- 
pro-B, pro-B and pre-B cells and their regulatory signaling during 
early developmental checkpoints14.

Currently, for children with BCP-ALL, risk prediction strategies 
integrate clinical, genetic and treatment-response features gathered 
during the first months of treatment15. As in most risk-prediction 
scenarios, prediction is imperfect. We reasoned that performing 
deep phenotypic single-cell studies of diagnostic leukemic samples 
could identify cell populations that are predictive of relapse, and 
that we could discover novel aspects of resistance to treatment in 
this disease.

To build on our study of normal early B lymphopoiesis, we per-
formed a mass cytometry analysis of primary diagnostic samples from 
patients with BCP-ALL. By aligning individual BCP-ALL cells with 
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Insight into the cancer cell populations that are responsible for relapsed disease is needed to improve outcomes. Here we report 
a single-cell-based study of B cell precursor acute lymphoblastic leukemia at diagnosis that reveals hidden developmentally 
dependent cell signaling states that are uniquely associated with relapse. By using mass cytometry we simultaneously quantified 
35 proteins involved in B cell development in 60 primary diagnostic samples. Each leukemia cell was then matched to its nearest 
healthy B cell population by a developmental classifier that operated at the single-cell level. Machine learning identified six 
features of expanded leukemic populations that were sufficient to predict patient relapse at diagnosis. These features implicated 
the pro-BII subpopulation of B cells with activated mTOR signaling, and the pre-BI subpopulation of B cells with activated 
and unresponsive pre-B cell receptor signaling, to be associated with relapse. This model, termed ‘developmentally dependent 
predictor of relapse’ (DDPR), significantly improves currently established risk stratification methods. DDPR features exist at 
diagnosis and persist at relapse. By leveraging a data-driven approach, we demonstrate the predictive value of single-cell ‘omics’ 
for patient stratification in a translational setting and provide a framework for its application to human cancer.
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developmental states along the normal B cell trajectory, we found that 
there was an expansion across the pre-pro-B cell to pre-BI cell transi-
tion. By applying machine learning to proteomic features extracted 
from these expanded cell populations, we constructed a predictive 
model of relapse that was validated in an independent patient cohort. 
This model revealed six cellular features that implicated a develop-
mental phenotype and behavioral identity of two cell populations 
in portending relapse. Analysis of pairs of samples from individual 
patients that were taken at the time of diagnosis and at relapse (here-
after referred to as matched diagnosis–relapse pairs) confirmed the 
persistence of these predictive features at relapse. Thus, analysis of 
BCP-ALL samples that distinguishes developmental states at high 
resolution reveals that a unique and reproducible cellular behavior 
across patients is a main driver of relapse.

REsulTs
Deep phenotyping reveals developmental heterogeneity in 
leukemia cells from patients with BCP-All
To understand the extent to which childhood BCP-ALL mimics the 
differentiation of its tissue of origin, we profiled diagnostic primary 

BM aspirates from 60 individuals with diverse clinical genetics by 
single-cell mass cytometry and compared the profiles to those of BM 
aspirates from five healthy donors (hereafter referred to as healthy 
BM (Fig. 1a and Supplementary Tables 1–3). Examination of the 
expression of proteins that are routinely used in flow-cytometry-based 
diagnosis of leukemic blasts revealed the expected patterns of expres-
sion, with overexpression of the early lymphoid antigen CD10 and the  
adhesion molecule CD34 as compared to healthy BM (Fig. 1b). To 
visualize similarities between BCP-ALL cells and normally developing 
B cells, we compared BCP-ALL cells to their healthy BM counterparts 
using principal component analysis (PCA) (Fig. 1c and Supplementary 
Fig. 1). Developing B cells from healthy donors occupied a remarkably 
clear path in this representation space (Fig. 1c, left). Once projected 
into the same space, BCP-ALL cells from individual patients fell into 
areas with similarity to multiple healthy populations, with a heavy 
skewing toward early stages of B lymphopoiesis (Fig. 1c, right), as 
expected8. We thus reasoned that aligning individual leukemic cells to 
their closest developmental state would enable us to view each BCP-
ALL sample as a set of aberrant developing B cell populations, which 
could potentially uncover novel aspects of BCP-ALL biology.
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Figure 1 Mass cytometry analysis of samples from patients with BCP-ALL reveals phenotypic heterogeneity of leukemic cells. (a) Summary of 
sample processing steps for mass cytometry analysis of primary samples from patients with BCP-ALL (see supplementary Tables 1–3 for patient 
information, antibody panel, and perturbation conditions, respectively). BM aspirates from 60 patients with BCP-ALL and five healthy donors (control) 
were included. Prognostic cytogenetic translocations identified at diagnosis, as well as relevant ex vivo perturbations used to uncover cell state, are 
indicated. ‘Negative’ patients were negative for any of the prognostic cytogenetic translocations analyzed. (b) Mass cytometry analysis of commonly used 
diagnostic antigens expressed by lineage-negative BM cells (see supplementary Fig. 1a for gating) from four representative patients (UPN7, UPN20, 
UPN94 and UPN96) with BCP-ALL and one healthy donor. TdT, terminal deoxynucleotidyl transferase. (c) Left, PCA of 12 manually gated B cell 
subpopulations in samples from healthy donors (1,000 cells sampled from each of n = 5 donors). The first two principal components were constructed 
using 11 markers that define B cell developmental populations (see supplementary Fig. 1b–d for gating, marker weights, and variance captured by 
each principal component). The developmental time color scale was defined by setting hematopoietic stem cells as red and mature B cells as blue. 
Intermediate populations were placed on this red-to-blue color gradient at equal intervals. For each stage, a black dot indicates the population centroid, 
and the surrounding circle indicates standard error based on five healthy donors. Right, PCA of samples from four patients with BCP-ALL shown 
projected onto healthy B cell progression. Each sample uniquely occupies the PCA space while overlapping with multiple healthy populations and other 
patient samples.
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Organization of BCP-All cells with a single-cell developmental 
classifier
To approximate the developmental state of each leukemic cell, we 
constructed a single-cell developmental classifier. Building on our 
recent study14, we manually partitioned healthy BM into 12 develop-
ing B cell populations and three populations of mixed progenitors or 
mature non-B cells (Supplementary Fig. 1b). These 15 populations 
were defined by the expression of 11 proteins involved in B cell devel-
opment, which provided a phenotypic maturity ‘barcode’ (Fig. 2).  
Mahalanobis distance was used to assign each cell to its closest devel-
opmental population (Supplementary Fig. 2a). We used manually 
gated healthy populations to test the reliability of this approach. In a 
ten-fold cross-validation approach, in which we iteratively defined 
the classifier using nine-tenths of the data and tested on the remain-
ing one-tenth; the classifier had a good predictive performance 
for each population and a 92% overall accuracy (Supplementary  
Fig. 2b–d). If a cell was misclassified, it was most likely to fall into 
a neighboring population, which suggested that the biological effect 
of misclassification was likely to be small (Supplementary Fig. 2c). 
We found that the Mahalanobis distance was superior to other dis-
tance metrics (such as the cosine14,16, Euclidian17 and Manhattan18 
metrics) in assigning cells to the correct developmental population 
(Supplementary Fig. 2d). Moreover, additional phenotypic markers 
did not improve classification relative to that using the original 11 
proteins (Supplementary Fig. 2e).

We used this single-cell classifier to assign each leukemic cell into 
the most phenotypically similar developmental stage. We emphasize 
that in this case we selected the closest developmental stage and do not 
imply that a leukemic cell is equivalent to a normal developing B cell 
(for example, a leukemic cell classified as a pre-BI cell is not suggested 
to be a pre-BI cell but rather is considered to be a ‘pre-BI-like’ cell). 

Leveraging prior knowledge of normal cellular differentiation to deline-
ate cancer cells into biologically meaningful populations enabled direct 
comparisons of these populations in healthy donors and patients.

BCP-All expands across the pre-pro-B to pre-BI developmental 
transition
Once classified, the frequency of cells in each developmental com-
partment was examined across all of the samples. As compared to 
healthy controls, we found a significant expansion across the pre-
pro-B to pre-BI transitional populations in samples from individuals 
with leukemia (Fig. 3a). Despite the clonal nature of leukemia, phe-
notypic heterogeneity was observed within individual ALL samples, 
such that in 100% of cases there was an expansion of cells in more than 
one developmental population: 5.3 ± 1.9 (mean ± s.d.) of expanded 
populations/patient (Supplementary Fig. 3a).

Because prognosis and risk stratification in BCP-ALL are based 
partially on recurrent chromosomal rearrangements, we determined 
whether there was any association between these translocation events 
and the classification of leukemia cells. All of the known genetic alter-
ations associated with BCP-ALL showed little correlation to overall 
developmental classification (i.e., the assignment of leukemic cells 
to their most similar healthy counterpart), although in some cases 
expansion of particular populations did reach statistical significance 
(Fig. 3b). Specifically, patients with translocation 1;19 (t(1;19), which 
creates a fusion between the genes transcription factor 3 and PBX 
homeobox 1 (TCF3–PBX1)) had a contraction in immature B cell 
populations as compared to patients without this translocation, cor-
roborating prior findings19,20. In cytokine-receptor-like factor 2 
(CRLF2)-rearranged ALL, the pro-BII and pre-BII compartments were 
contracted. In some cases, we had access to matched BM and periph-
eral blood samples at the time of diagnosis. In general, the overall  
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Figure 2 Single-cell developmental classifier for BCP-ALL. BM aspirates from five healthy donors were manually gated into 12 consecutive 
developmental stages of B lymphopoiesis (final gate is shown as a red box on a contour plot in the profiles at the bottom; the text above indicates 
prior gate(s) on lineage-negative cells; see supplementary Fig. 1a,b for complete gating strategy). The mean arsinh-transformed expression of 11 
proteins with relevance to normal B lymphopoiesis, shown in the heat bar, was determined for each healthy cell population (shown above the contour 
plots, where black indicates low expression, and white indicates high expression). Single cells from each BCP-ALL sample were then assigned to the 
most similar population of healthy cells based on the shortest Mahalanobis distance calculated from expression of the same 11 proteins. Cells with a 
distance greater than the classification threshold to all developmental populations remained unclassified (<1% for each patient). IgHi, intracellular 
immunoglobulin heavy chain; IgHs, surface immunoglobulin heavy chain.
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classification did not substantially change on the basis of the use of 
BM versus peripheral blood samples; however, some pro-B to pre-B 
transitional populations were not as frequently seen in the peripheral 
blood as in the BM (Supplementary Fig. 3b). The weak association of 
single-cell developmental classification with recurrent chromosomal 
rearrangements emphasizes the general applicability of our approach 
across BCP-ALL samples with diverse clinical genetics.

BCP-All cells maintain the hallmarks and co-expression 
patterns of early B cells
By comparing the developmental leukemic cell subsets to B cell sub-
sets from healthy individuals, we found three major patterns: (i) an 
expression pattern similar to that in healthy B cells (e.g., CD45 and 
IKAROS), (ii) overexpression in all cell populations (e.g., CD10 and 
PAX5), and (iii) a developmentally inappropriate expression pat-
tern (e.g., CD58, CD123 and CD43) (Fig. 3c–e and Supplementary  
Fig. 3c–e). Unexpectedly, despite the aberrant expression of three (of 
24 examined) proteins associated with B cell development, BCP-ALL 

cells generally maintained the expected developmental progression 
pattern of protein expression in leukemic populations as compared to 
that in healthy BM. Notably, PAX5, a master B cell transcription factor 
encoded by a gene that is frequently mutated in BCP-ALL21, was highly 
overexpressed on all leukemic cell populations, even in the case of 
two patients who harbored heterozygous PAX5 deletions according to 
genomic analysis (Supplementary Fig. 3f and Supplementary Table 4).  
In contrast to the general maintenance of phenotypic expression of 
surface and/or intracellular developmental proteins in leukemic cells, 
there was a higher frequency of BCP-ALL cells with activated basal 
signaling than in the healthy BM controls. In particular, the frequency 
of cells with active ribosomal protein S6 (RPS6), which is activated 
during protein translation and is downstream of mechanistic target 
of rapamycin (mTOR), or with activated cAMP-response-element-
binding protein (CREB) expression was markedly greater in leukemic 
populations than in healthy B cells (Supplementary Fig. 3g). Thus, 
using healthy B cell progenitor populations to organize the leukemic 
subpopulations in patients with BCP-ALL provides a refined view 
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Figure 3 Developmental classification reveals that BCP-ALL results in an expansion of cells across the pre-pro-B to pre-BI transition. (a) Percentage  
of cells from healthy donor BM (n = 5, gray line) or diagnostic BM samples from patients with BCP-ALL (n = 60, orange line) after classification into 
each developmental subpopulation. Cell populations that were significantly expanded in leukemic samples are shown in the blue box (pre-pro-B,  
P = 0.0012; pro-BI, P = 0.011; pro-BII, P = 0.00013; pre-BI, P = 0.011; early progenitors, P = 0.00013; late progenitors contracted, P = 0.036),  
and the remaining populations did not change significantly (P ≥ 0.05). (b) Percentage of cells in each developmental population from patients with 
BCP-ALL, grouped by diagnostic cytogenetics: (i) translocation t(9;22)(q34;q11) BCR–ABL1: t(9;22)– (n = 50) versus t(9;22)+ (n = 10) (top left);  
(ii) translocation t(1;19)(q23;p13) TCF3–PBX1: t(1;19)– (n = 56) versus t(1;19)+ (n = 4): progenitor I, P = 0.015; pre-pro-B, P = 0.037; pro-BI,  
P = 0.026; pro-BII, P = 6.2 × 10−6; pre-BI, P = 0.022 (top right); (iii) translocation t(12;21)(p13;q22) ETV6–RUNX1: t(12;21)– (n = 47) versus 
t(12;21)+ (n = 13) (bottom left); and (iv) CRLF2-rearranged: CRLF2r– (n = 51) versus CRLF2r+ (n = 9): pro-BII, P = 0.0033; pre-BII, P = 0.00017 
(bottom right). (c–e) Antigen expression on BM developmental populations from healthy donors (n = 5, gray line) or patients with BCP-ALL (n = 60, 
orange line): CD45 (c), CD10 (d) and CD58 (e). “Combined” denotes expression in all cells without developmental classification. Throughout, data are 
mean ± s.e.m. *P < 0.05, **P < 0.01, ***P < 0.001 by an unpaired two-tailed Welch’s t-test using Bonferroni correction for multiple comparisons. 
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of aberrations in phenotypic and regulatory molecule expression in 
leukemic cell populations.

Developmentally dependent predictor of relapse, a data-driven 
model based on the cellular features of BCP-All cells at 
diagnosis
Long-term survival without recurrence of disease is the primary clin-
ical indicator of therapeutic success for patients with BCP-ALL. In 
patients for whom ≥3 years of follow-up data were available (n = 54),  
31% relapsed (n = 17), a slightly higher rate than the 15–20% 
expected relapse rate for childhood BCP-ALL15. We first deter-
mined whether developmental classification alone could be used to 
stratify patients who would go on to relapse from those who would 
remain in remission. Cells from patients who relapsed were not 
enriched in a particular developmental state relative to cells from 
patients who did not relapse (Supplementary Fig. 4a), suggesting 
that relapse was not strictly connected to a particular phenotypic 
developmental state.

We used the cellular features at the time of diagnosis for each 
patient to construct a model to predict clinical outcome (relapse 
versus continued remission) and identify a short list of leukemic 
cell features at the time of diagnosis that were sufficient to predict 
relapse (Fig. 4a). To do this, we used a machine-learning approach, 
termed elastic net, that was designed to identify a small set of predic-
tive features while preserving predictive power22. Because we could 
not exclude the possibility that some patients could relapse after the 
last documented follow-up appointment, we modeled relapse as a 
time-to-event outcome in an elastic-net-regularized Cox model23. 
We applied this method to a set of cell features from the expanded 
leukemic cell populations, including frequency of cells in each popu-
lation, expression of surface and intracellular proteins, and frequency 
of cells with activated signaling molecules in the unperturbed state 
and in response to each perturbation (Supplementary Table 5). We 
also included patient age and white blood cell count at diagnosis, as 
these features are considered important clinically (Supplementary 
Table 1). This resulted in 352 features per patient across 54 patients, 
for a total of 19,008 data points.

Using random sampling, we divided the patient cohort into a train-
ing cohort (80% of patients, n = 44) and a validation cohort (20% 
of patients, n = 10). We applied pre-validation24,25 to estimate the  
performance of the relapse prediction model within the training 
cohort, and then we validated the final model on the independent 
validation cohort. We therefore assessed the predictive performance 
of our model twice: within the training cohort and then within the 
validation cohort. We termed the resulting model ‘developmentally 
dependent predictor of relapse’ (DDPR; pronounced ‘deeper’).

Activated signaling in pro-BII and pre-BI cells at diagnosis 
predicts relapse
Of the 352 features, hierarchical clustering of six cellular features 
identified by DDPR almost perfectly separated patients according 
to their last documented relapse status (Fig. 4b). Examining indi-
vidual features revealed two developmentally dependent patterns: (i) 
the ability of cells to respond to ex vivo stimulation was associated 
with continuous remission (Fig. 4b, yellow box) and (ii) an increased 
frequency of cells with basally active RPS6 signaling was associated 
with relapse (Fig. 4b, orange box). All six features were confined 
to pro-BII and pre-BI cell populations. In pro-BII cells of patients 
who ultimately relapsed, we observed high basal activity of RPS6 
and a lack of response to the phosphatase inhibitor pervanadate, as 

assessed by phosphorylated eukaryotic translation initiation factor  
4E–binding protein 1 (p4EBP1), due to high basal activation of 4EBP1 
(Fig. 4c (left) and Supplementary Fig. 4b). Similarly, in pre-BI cells, 
the response to pre-B cell receptor (pre-BCR) crosslinking or per-
vanadate treatment, as assessed by pRPS6 and pCREB levels, and the 
response to thymic stromal lymphopoietin (TSLP) stimulation, as 
assessed by phosphorylated spleen tyrosine kinase (pSYK), were sig-
nificantly blunted in patients who went on to relapse (Fig. 4c (right), 
Supplementary Fig. 4b (right, c). In essence, the signaling features 
that were predictive of relapse related to high basal activation of the 
mTOR pathway in pro-BII cells, as well as high basal activation and 
a lack of response to stimulation of the pre-BCR pathway in pre-BI 
cells. Differences in these features were apparent even when applied 
to a single common genetic subgroup of patients with translocation 
ETV6–RUNX1 (t(12;21)(p13;q22); Supplementary Fig. 4d), who 
generally have a favorable prognosis.

To assess DDPR performance, we calculated an integrated 
cumulative/dynamic area under the curve (iAUC)26 and a C-statis-
tic27, the measures appropriate for censored time-to-event data. In the 
training cohort, DDPR had a predicted (cross-validated) iAUC value 
of 0.92 and a C-statistic of 0.87 (Fig. 4d, left). Applying the model to 
the independent validation cohort resulted in an iAUC value of 0.85 
and a C-statistic of 0.87 (Fig. 4d, right), indicating strong model per-
formance. To determine whether predictive cellular features could be 
detected in bulk leukemia cells without developmental classification, 
we repeated this analysis using features from all of the cells in the 
blast cell gate. Using data from unclassified bulk cells, we found that 
the model performed inferiorly to DDPR (training cohort iAUCDDPR 
= 0.92 versus iAUCbulk = 0.71; validation cohort iAUCDDPR = 0.85 
versus iAUCbulk = 0.66; Supplementary Fig. 4e). DDPR performed 
well as a risk-stratification method at diagnosis in predicting 
relapse-free survival (RFS) in a retrospective analysis of both cohorts  
(P = 2.8 × 10−7; Fig. 4e and Supplementary Fig. 4f). Thus, organ-
izing data from primary diagnostic leukemia samples using single-
cell developmental classification was critical for predicting future 
clinical outcomes.

DDPR synergizes with current risk-stratification methods
Current risk-prediction methodology integrates a combination of 
clinical (National Cancer Institute (NCI)-Rome criteria28) and genetic 
(cytogenetic) features at diagnosis, as well as an early response to ther-
apy (prednisone response and/or minimal residual risk (MRD)29,30). 
Final risk, which guides clinical decisions, integrates all of these fea-
tures and is generally determined 3 months following initiation of 
treatment, although for some patients risk may be known earlier.

As expected, NCI–Rome criteria successfully stratified 53 patients 
with available risk data according to RFS (log-rank P = 0.0083; Fig. 5a, 
top). However, integrating DDPR with NCI–Rome criteria resulted 
in a significant improvement in risk stratification, as assessed by the 
integrated discrimination improvement index (IDI), continuous net 
reclassification improvement (NRI) and median improvement (MI) 
for time-to-event data31,32 at 5 years following diagnosis (Fig. 5a  
(bottom) and Supplementary Fig. 5a). Within the 45 patients for 
whom MRD and final risk were available (per AIEOP-BFM 2000 
protocol definitions), either MRD (P = 0.0086; Fig. 5b, top) or 
final risk (P = 0.044; Fig. 5c, top) alone performed well in stratify-
ing patients according to RFS. Combining DDPR prediction with 
either MRD (Fig. 5b, bottom) or final risk (Fig. 5c, bottom) signifi-
cantly improved patient stratification at 5 years following diagnosis  
(P < 0.05; Supplementary Fig. 5a).
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In clinical practice, relapse risk determines treatment decisions for 
patients. Key DDPR features were clearly different in patients who 
went on to relapse from those who remained in continuous remis-
sion, regardless of their NCI–Rome or MRD status (Supplementary  
Fig. 5b,c), suggesting that cellular phenotypes identified by DDPR 
may provide rational drug targets for patients at risk of relapse.

Cells characterized by activated mTOR and deficits in pre-BCR 
signaling persist from diagnosis to relapse
The analyses described thus far do not establish whether features 
identified by DDPR are present at relapse. To understand how BCP-
ALL is remodeled under the pressure of treatment, seven matched 
diagnosis–relapse sample pairs were analyzed (Fig. 6a). These samples 
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Figure 4 DDPR predicts which patients will go on to relapse based on the features of expanded BCP-ALL populations at the time of diagnosis.  
(a) Construction of the DDPR model that predicts relapse in patients with BCP-ALL. Data from 54 patients with ≥3 years of follow-up data were  
divided into training (n = 44) and validation (n = 10) cohorts. Cellular features available to DDPR included signaling in the basal state, changes in 
signaling state following perturbations, mean arsinh-transformed expression of surface and intracellular proteins, and frequency of cells in the  
expanded developmental populations. DDPR performance was estimated using ten-fold cross-validation (CV) within the training cohort to yield pre-
validated relative risk for each patient. The final DDPR model (elastic-net-regularized Cox model) was then built using all of the training cohort  
samples. Once constructed, DDPR was applied to predict relative risk for samples in the validation cohort. (b) Hierarchical clustering of six predictive 
features of relapse identified by DDPR within the training cohort. The last documented relapse status is shown above the heat map as relapse (red)  
or continuous complete remission (blue). Coefficients of predictors are shown on the left of the heat map. Yellow box indicates five features with 
negative correlation to relapse. Orange box indicates one feature with positive correlation to relapse. BCR-XL, B cell receptor crosslink; PVO4, 
pervanadate. (c) Percentage of cells positive for key DDPR cellular features in pro-BII and pre-BI cells in all patients (n = 54). Data are mean ± s.e.m.  
P values are not shown, because these features were selected to be different and nonredundant between classes (unpaired two-tailed Welch’s t-test  
from left to right would yield: P = 0.055, P = 0.044, P = 0.13, P = 5.7 × 10−6 and P = 1.6 × 10−7). Dashed lines indicate mean levels in the 
corresponding developmental populations within healthy BM aspirates of five healthy donors; dotted lines indicate s.e.m. (d) Time-dependent AUC 
curves showing performance for relapse prediction in the training (left) and validation (right) cohorts. iAUC and C-statistic (C-stat) summary measures 
are shown for each curve built using pre-validated (green, left), overall model fit (blue, left) and predicted (green, right) relative risk of relapse with 
reference to the sample average. (e) Kaplan–Meier analysis of RFS of all patients with ≥3 years of follow-up data (n = 54), stratified by DDPR risk  
group. An estimate for relative risk of relapse was used to assign a risk group to each patient (pre-validated in the training cohort; predicted in the 
validation cohort; Online Methods). P values were calculated using the log-rank test. Log-rank tests for: training cohort alone, P = 5.6 × 10−6;  
validation cohort alone, P = 0.040. RFS estimates, s.e.m., number of patients at risk and P values for both groups at 5 and 7 years are shown on  
the right (5 years, P = 1.02 × 10−3; 7 years, P = 3.03 × 10−6). 
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comprised diverse underlying prognostic genetics, including those 
with good risk (ETV6–RUNX1; n = 1), poor risk (BCR–ABL1; n = 2) 
and without known prognostic genetic aberrations (n = 4). In con-
trast to the samples collected at the initial time of diagnosis, which 
showed an expansion spanning the pre-pro-B to pre-BI transition, at 
relapse the expansion narrowed almost exclusively to the pre-BI popu-
lation, but this expansion was also present in the diagnosis specimen  
(Fig. 6a, red box). In these paired samples, DDPR predictive features 
were present at diagnosis and were either maintained or exacerbated 
at relapse (Fig. 6b). Taken together, these results indicate that the 
cellular populations and features associated with poor outcome exist 
at diagnosis and persist at relapse.

Because we are able to examine the concomitant expression of 
proteins in the same cell, we examined single-cell pairwise correla-
tion between pRPS6 and p4EBP1 in pro-BII cells from the matched 
specimens. We found that the levels of these proteins were corre-
lated at both the time of diagnosis and after relapse (Spearman’s 
ρ (± s.e.m.) for pRPS6–p4EBP1: at diagnosis, ρ = 0.31 (± 0.10); at 
relapse, ρ = 0.39 (± 0.05); Fig. 6c (left) and Supplementary Fig. 6a).  
Similarly, pre-BI cells displayed a moderate correlation between 
their implicated molecules pSYK, pCREB and pRPS6 (for example, 
pCREB–pRPS6: at diagnosis, ρ = 0.27 (± 0.04); at relapse, ρ = 0.45 
(± 0.05); Fig. 6c (right) and Supplementary Fig. 6b).

To quantify the strengths of signaling relationships between these 
proteins in the pro-BII and pre-BI populations, we used ‘conditional 
density resampled estimate of mutual information’ (DREMI) to esti-
mate the dependency between each pair of proteins33. In leukemic 
pre-BI cells, pSYK, pCREB and pRPS6 were indeed likely to belong to  

cross-correlated signaling networks that persisted from diagnosis to 
relapse (Fig. 6d). These pre-BI cells could not respond to pre-BCR 
crosslinking by further increasing the levels of pCREB and pRPS6 
(Supplementary Fig. 6b). Similarly, in the pro-BII population, 
DREMI confirmed an expected dependency between p4EBP1 and 
pRPS6 (Supplementary Fig. 6c). Notably, for both p4EBP–pRPS6 and 
pSYK–pCREB dependencies, the strength of the signaling relation-
ship was enhanced at the time relapse, indicating that there was either 
a modest strengthening of the relationship between these molecules 
or an increased homogeneity of cell populations. In either case, the 
evidence points toward the importance of these signaling relationships 
during progression toward an aggressive tumor state. By comparison, in 
patients who did not relapse, co-activation of CREB, RPS6 and SYK at 
baseline was diminished in pre-BI cells, and these cells had the ability 
to co-activate CREB and RPS6 in response to pre-BCR crosslinking 
(Supplementary Fig. 6d).

To determine whether the predicted cellular signaling phenotypes 
could be therapeutically targeted, we treated primary diagnostic 
samples ex vivo with chemical inhibitors that target the activated 
pathways. Treatment of healthy or leukemic cells with BEZ235, a 
dual phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) and 
mTOR inhibitor (PI3K–mTORi), reduced the frequency of pro-BII 
cells with activated p4EBP1 (Fig. 6e, left). However, phosphor-
ylation of RPS6 was not as strongly inhibited by treatment with 
BEZ235 in leukemic pro-BII and pre-BI cells, suggesting that there 
were multiple routes for RPS6 activation (Supplementary Fig. 6e). 
By contrast, treatment with dasatinib, a dual ABL and SRC family 
kinase inhibitor (ABL–SFKi), reduced the frequency of pre-BI cells 
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with activated SYK in patients who remained in remission to levels 
that approached those in healthy BM; yet, its effect was minor in 
patients who went on to relapse (Fig. 6e, right). Treatment with 
dasatinib was also able to slightly reduce the frequencies of pro-BII 
cells with activated RPS6 and 4EBP1, as well as of pre-BI cells with 

activated RPS6 and CREB (Supplementary Fig. 6f). Taken together, 
these data indicate that some DDPR features may be therapeutically 
targetable; however, knowledge of underlying developmental signal-
ing must guide the design of therapeutic approaches for improving 
patient outcomes.
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Figure 6 Cells with DDPR features are present at the time of diagnosis and persist at relapse. (a) Percentage of cells in each developmental population 
of all diagnostic BCP-ALL samples from patients who either stayed in continuous remission for ≥3 years (gray, n = 37) or went on to relapse (black,  
n = 17), as compared to that in matched diagnosis–relapse pairs (diagnosis, blue; relapse, purple; n = 7). Red box highlights a significant (P = 0.0030) 
expansion of the pre-BI population at relapse as compared to that in diagnostic samples from patients who did not relapse. P values were calculated 
using a two-sided Tukey’s honest significance test and were corrected for multiple comparisons using Bonferroni correction. (b) Bar plots showing key 
DDPR features in all diagnostic samples compared to matched diagnosis–relapse pairs, as in a: percentage of pro-BII cells with pRPS6 or p4EBP1 in 
the nonstimulated (basal) state, percentage of pre-BI cells with pSYK in the basal state, and change from the basal state in the percentage of pre-BI 
cells with pCREB or pRPS6 signaling following BCR cross-linking (BCR-XL). (c) Bar plots showing the Spearman’s rank correlation coefficient for the 
key DDPR features listed in b, calculated for matched diagnosis–relapse pairs (n = 7): single-cell correlation of arsinh-transformed values between 
pRPS6 and p4EBP1 in pro-BII cells (left), or between pCREB and pRPS6, pSYK and pCREB, or pSYK and pRPS6 in pre-BI cells (right). None of the 
DDPR features changed significantly from the time of diagnosis to relapse in b,c (paired two-tailed Welch’s t-test applied to matched diagnosis– 
relapse pairs only). (d) DREMI analysis and conditional density rescaled visualization (DREVI) analysis for DDPR features in pre-BI cells. Up to 5,000 
pre-BI cells from matched diagnosis–relapse pairs (n = 7) were sampled and pooled before analysis. Left, estimated conditional density functions for 
pSYK-to-pCREB signaling response (pSYK→pCREB) and for pCREB→pSYK at diagnosis and at relapse; sigmoidal response functions were fitted to 
each plot. Right, quantification for strengths of pairwise signaling relationships within the network formed by pSYK, pCREB and pRPS6 at diagnosis 
and at relapse. (e) Bar plots showing response of DDPR features (basal p4EBP1 in pro-BII cells and basal pSYK in pre-BI cells) to short-term ex vivo 
treatment (see supplementary Table 3) in samples from healthy donors (n = 5) or patients with BCP-ALL (no relapse, n = 37; relapse, n = 17). Shown 
are the effects of BEZ235 (a dual PI3K and mTOR inhibitor, PI3K–mTORi) in pro-BII cells (healthy, P = 0.023; no relapse, P = 0.0032; relapse,  
P = 0.0092) and of dasatinib (a dual BCR–ABL kinase and SRC family kinase inhibitor, ABL–SFKi) in pre-BI cells (healthy, P = 0.031; no relapse,  
P = 0.048; relapse, P = 0.22). Effects were assessed using a two-tailed Welch’s t-test. Throughout, data are mean ± s.e.m. *P < 0.05; **P < 0.01;  
n.s, not significant (P ≥ 0.05).
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DIsCussION
Deep phenotyping of primary cancer samples provides a unique 
opportunity to examine intratumoral heterogeneity and link patient 
outcomes to specific cellular populations. Yet, it remains challenging 
to organize these massive data sets into meaningful models. Data from 
single-cell analyses of primary tumors must be stratified to under-
stand how cellular diversity of tumors affects disease progression or 
treatment response.

This study leveraged the phenotypic profiling depth enabled by 
mass cytometry to perform high-parameter single-cell analyses of 
primary patient samples, without extended ex vivo culture or passage 
through an immunodeficient mouse, to preserve biology as it exists 
in the patient. We addressed the intrinsic heterogeneity of the single-
cell data by showing that BCP-ALL cells could be reliably aligned 
to a developmental continuum of normal cell populations. In doing 
so, we organized diverse data from multiple patients into a ‘univer-
sal’ physiological standard that allowed relevant comparisons. This 
approach not only allows for the identification of key cell populations 
and their behaviors in relation to clinical outcome, but also provides 
mechanistic insight into the persistent disease state.

Direct comparison of BCP-ALL cells to human B cell progenitors 
enabled identification of developmental states that were most vulner-
able to malignant transformation: the pre-pro-B to pre-BI transition. 
During this transition, normal B cells rearrange their immunoglobulin 
heavy chain locus with coordinated cell fate decisions. We have previ-
ously demonstrated changes in network structure surrounding the 
differentiation of pro-B cells into pre-B cells, particularly regarding 
the transition between the interleukin (IL)-7 receptor and pre-BCR 
signaling pathways14. Signaling through the IL-7 receptor in healthy 
pro-B cells activates the JAK–STAT and PI3K signaling pathways34,35. 
Subsequently, normally developing B cells proceed to further expand 
and differentiate after receiving a strong pre-BCR signal that informs 
them of successful heavy chain rearrangement34. DDPR identified 
activation of signaling molecules in the pre-BCR (pSYK and pCREB) 
and PI3K–mTOR (pRPS6 and p4EBP1) pathways around this develop-
mental transition in individuals who were likely to relapse. Aberrant 
BCR-related signaling is known to be pathogenic in other B cell malig-
nancies, such as diffuse large B cell lymphoma36. Dysregulation of 
pre-BCR signaling has been described in Philadelphia-chromosome-
rearranged (Ph+) BCP-ALL, which is likely mediated by upregulation 
of inhibitory regulators or mutations in genes that encode them37–39. 
Our results suggest that leukemia may exploit this normal develop-
mental process to maintain pre-BCR signaling at a ‘just-right’ level. 
The ABL–SFKi was effective in targeting pre-BCR signaling in pre-
BI cells, as assessed by phosphorylation of SYK, but only in patients 
who would not go on to relapse. Thus, an understanding of normal 
developmental signaling states, and how leukemic cells maintain or 
diverge from these states in their developmental context, can guide 
therapeutic efforts to affect patient outcomes.

As we have demonstrated previously, cellular behavior is a key 
determinant of resistance to therapy40–44. It is not just the outward 
identity of leukemia cells, as measured by the presence of molecules 
on the cell surface, that determines therapy resistance, but instead 
how those cells behave, as measured by intracellular signaling states. 
This model cannot currently determine the origin of leukemic trans-
formation, but our data suggest that the drive of leukemic cells to 
differentiate remains strong as they attempt to continue their devel-
opmental program. Given the limited size of the patient cohort stud-
ied, DDPR must be applied to larger cohorts of patients. It will be 
of interest to extend this type of analysis to adult BCP-ALL, as it is 

well understood that an older age at diagnosis carries a higher risk 
of relapse. Moreover, this developmental model of BCP-ALL would 
benefit from integration with genomic, epigenetic and transcriptomic 
investigations of both healthy and leukemic populations. Defining the 
mechanisms that control survival and proliferation decisions at the 
pro-BII-to-pre-BI developmental transition will be informative with 
regard to how BCP-ALL exploits these pathways and how genetic 
lesions associated with leukemia cooperate with the underlying devel-
opmental program.

Altogether, this study shows that aligning transformed cells to their 
normal developmental path can improve the risk-stratification system 
and identify, with improved precision, the most relevant cell popula-
tions for further study and therapeutic targeting. More broadly, this 
study highlights the translational value of understanding cancer at 
the single-cell level and applying machine learning to guide treatment 
paradigms for patients with cancer.

METHODs
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONlINE METHODs
Bone marrow samples from patients and healthy donors. Reagents and 
methods relevant to this work can also be found in the Life Sciences Reporting 
Summary. Fresh human BM was obtained from healthy adult donors (n = 5 
(three females, ages 20, 27 and 44 years old, and two males, ages 26 and 28 
years old); average age, 29 years; AllCells, Alameda, CA, USA). De-identi-
fied BM samples from pediatric patients with BCP-ALL were obtained under 
informed consent from the Lucile Packard Children’s Hospital at Stanford 
(Stanford, CA, USA; Ph+ samples, n = 9) and the Pediatric Clinic University 
of Milan Bicocca (Monza, Italy; n = 51) for a total of 60 primary diagnostic 
patient samples. Use of these samples was approved by the Institutional Review 
Boards at both institutions. All relevant ethical regulations were followed in 
this study. No a priori power calculation was performed, as this is the first 
study of its kind. Patients were included based on availability of sufficient cells 
for a mass-cytometry-based study and on the availability of at least 3 years 
of follow-up data from the date of diagnosis. Infants with MLL-rearranged 
BCP-ALL were excluded from this study. Clinical data were available for these 
samples, including minimal residual disease (MRD) risk group and final risk 
assignment as per the AIEOP-BFM ALL 2000 protocol (https://clinicaltrials.
gov identifier: NCT00613457)45, diagnostic cytogenetics, age at diagnosis, gen-
der, white blood cell count at diagnosis, date of diagnosis, date of relapse and 
date of the last follow-up (Supplementary Table 1). Median follow-up time 
was 5.5 years. In agreement with the AIEOP-BFM ALL 2000 study45, median 
time to relapse was 2.0 years. Median follow-up time for patients in continuous 
complete remission (CCR) was 7.6 years. Gene copy number and mutational 
analysis for the genes IKZF1, P2RY8–CRLF2, CDKN2A, CDKN2B, PAX5, 
ETV6, BTG1, RB1 and ERG was performed using multiplex-ligation-depend-
ent probe amplification (MLPA) for 20 patients; IGH2–CRLF2 rearrangement 
was tested by fluorescent in situ hybridization (FISH) analysis for 20 patients; 
and JAK2 mutations were identified by high-resolution melt (HRM) analysis 
for 16 patients (Supplementary Table 4).

Clinical protocol definitions. Treatment protocols for each patient are indicated 
in Supplementary Table 1. Therapy for all of the patients was based on the 
Berlin–Frankfurt–Munster (BFM) backbone46. For Italian patients (the majority 
in this study), MRD risk and final risk were assigned as per the AIEOP-BFM 
ALL 2000 clinical protocol45. Briefly, after 7 d of monotherapy with prednisone 
and one intrathecally administered dose of methotrexate, treatment was com-
plemented by administration of corticosteroid, vincristine, daunorubicin and 
L-asparaginase. Remission induction was followed by intravenous administra-
tion of cyclophosphamide and cytarabine, intrathecal administration of meth-
otrexate and oral administration of mercaptopurine. Risk group assignment 
resulted from a combination of presenting features and response to therapy, as 
measured by microscopic examination of peripheral blood for leukemic cells 
at day 8 and MRD at time point (TP) 1 (day 33) and TP2 (day 78), as assessed 
by PCR analysis of immunoglobulin gene rearrangements. Patients were deter-
mined to be: standard risk (SR) if MRD was negative at both TP1 and TP2 and 
no adverse clinical features were observed; intermediate risk (IR) if MRD was 
positive at TP1 or TP2 but <10−3; or MRD high risk (HR) if MRD > 10−3 at 
TP2. The HR group included patients with any of the following criteria: Ph+ 
ALL, t(4;11) or MLL–AF4; ‘prednisone-poor response’ (PPR) >1,000 blasts/ml 
on day 8; failure to achieve CR on TP1; or high degree of MRD at TP2 (>1 × 
10−3)45. Clinical remission was defined by the presence of <5% blasts in the BM 
by morphologic inspection.

Mass cytometry. Samples were processed as previously described47. Briefly, 
viably preserved BM cells were thawed and resuspended in 90% RPMI medium 
(ThermoFisher Scientific, Waltham, MA, USA)r?] with 10% FCS supplemented 
with 20 U/ml sodium heparin (Sigma-Aldrich, St. Louis, MO, USA), 0.025 U/ml 
Benzonase (Sigma-Aldrich), 1× L-glutamine and 1× penicillin–streptomycin 
(Invitrogen, Carlsbad, CA, USA). Cells were rested at 37 °C for 30 min and 
stained for viability with cisplatin as described48. Following viability staining, 
cells were perturbed under the following conditions: treatment with pervanad-
ate, IL-7, thymic stromal lymphopoietin (TSLP), dasatinib, BEZ-235 or tofac-
itinib, or by BCR crosslinking; sources, concentrations and time points are listed 
in Supplementary Table 3. Cells were then fixed with paraformaldehyde (PFA; 

Electron Microscopy Sciences, Hatfield, PA, USA) to a final concentration of 
1.6% for 10 min at room temperature. Cells were barcoded using 20-plex pal-
ladium barcoding plates prepared in-house as described49. To control for batch 
effects, we included at least one healthy BM reference sample within each barcod-
ing plate. A total of 36 barcode plates were used in this study. Following barcod-
ing, cells were pelleted and washed once with cell-staining medium (CSM; PBS 
with 0.5% BSA and 0.02% sodium azide) to remove residual PFA. Blocking was 
performed with Purified Human Fc Receptor Binding Inhibitor (eBioscience, 
San Diego, CA, USA), following the manufacturer’s instructions. Antibodies to 
surface markers were added, yielding 50- or 100-µl final reaction volumes, and 
samples were incubated at room temperature for 30 min (Supplementary Table 
2). Cells were pelleted and washed with CSM before permeabilization with 4 °C 
methanol for 10 min at 4 °C and optional storage at −80 °C. Cells were washed 
with CSM and stained with intracellular-marker- and/or phospho-specific  
antibodies in 50 µl for 30 min at room temperature (Supplementary Table 2).  
Cells were washed once in CSM, then stained with 1:5,000 191Ir/193Ir DNA inter-
calator (Fluidigm, South San Francisco, CA, USA) in PBS with 1.6% PFA for 
20 min at room temperature. Cells were washed once with CSM, washed twice 
with double-distilled water, filtered to remove aggregates and resuspended in 
139La/142Pr/159Tb/169Tm/175Lu normalization beads50 immediately before analy-
sis using a CyTOF1 mass cytometer (Fluidigm). Throughout the analysis, cells 
were maintained at 4 °C and introduced at a constant rate of ~300 cells/s.

Magnetic-bead-based depletion of non-B cell subpopulations from healthy 
samples. To enrich Ficoll-treated BM from healthy donors for rare hematopoi-
etic and B lymphocyte progenitors, cells were incubated with biotin-conjugated 
antibodies (Supplementary Table 6) for 30 min at a concentration of 5 million 
cells per 100 µl. Cells were washed with CSM twice and then incubated with 
BD Streptavidin Particles Plus (BD Biosciences, Franklin Lakes, NJ, USA) at the 
manufacturer’s recommended concentration for 30 min at room temperature. 
Particle-labeled cells were resuspended in CSM to approximately 2 × 107 to  
8 × 107 cells/ml and placed in a magnetic holder for 7 min. The supernatant 
was transferred to a new tube, and the beads or cells were washed, resuspended 
and placed back in the magnetic holder for an additional round of depletion 
and supernatant recovery. This washing procedure was repeated. Cells from the 
supernatant were then pelleted by centrifugation at 250g for 5 min. Depleted 
healthy cells were then stimulated and fixed before being aliquoted for use as 
controls on each barcode plate. These samples were then stained and analyzed 
alongside the leukemia samples.

Processing of mass cytometry data. Data were normalized together using 
bead normalization50, and files were debarcoded as described49. After debar-
coding, we obtained ≥600,000 single-cell events per patient. Single-cell pro-
tein expression data were extracted using Bioconductor software (http://www.
bioconductor.org) and transformed using the inverse hyperbolic sine (arsinh) 
function with a cofactor of 5. To control for batch effects among barcoding 
plates, we performed percentile normalization using the healthy reference BM 
sample(s) that were included within each plate (normalization values across 
barcoding plates were in the range of 0.97 to 1.18, indicating that batch effects 
before normalization were small). Expression of proteins in each population 
of interest was determined by calculating the mean level of expression after 
arsinh transformation. Calculation of the percentage of positive cells for each 
phosphorylated protein was based on a mass cytometry cutoff of ≥10 counts. 
For single-cell correlation between two antigens, we calculated Spearman’s rank 
correlation coefficient using arsinh-transformed data for each patient separately. 
To perform DREMI and DREVI analyses, we sampled up to 5,000 cells from 
each patient and assessed strengths of pairwise interaction on pooled samples 
using a MATLAB-based software, simpledremi (http://www.c2b2.columbia.
edu/danapeerlab/html/dremi.html)33.

Manual gating. Single cells were gated using Cytobank software (https://www.
cytobank.org) based on event length and 191Ir/193Ir DNA content (to avoid debris 
and doublets) as described47. Following single-cell gating, live non-apoptotic 
cells were gated based on cleaved poly(ADP-ribose) polymerase (cPARP) and 
195Pt content48. Platelets and erythrocytes were excluded by gating on CD61 
and CD235a, respectively. The remaining fraction was gated to exclude T cells 
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and myeloid cells on the basis of CD3e and of CD33 and CD16 expression, 
respectively. After further exclusion of CD38high plasma cells, the remaining 
fraction was defined as lineage-negative blasts (Lin− B+; see Supplementary 
Fig. 1a for gating). Further analysis was applied to this Lin− B+ fraction unless 
otherwise noted.

Single-cell developmental classification. Lin− B+ fraction from healthy human 
BM was gated into 15 developmental populations of normal B lymphopoiesis, 
mixed progenitors and mature non-B cell fractions, as shown in Supplementary 
Figure 1b. The distribution of each population was based on the expression of 
11 B cell developmental proteins that were used for manual gating: CD34, CD38, 
CD127, CD24, terminal deoxynucleotidyl transferase (TdT), CD179a, CD179b, 
intracellular immunoglobulin heavy chain (IgHi), surface IgH (IgHs), CD19 and 
CD20. Prior to classification, each leukemia sample was normalized to control 
for batch effects (see subsection “Processing of mass cytometry data”). Lin− B+ 
cells from each leukemia sample were then assigned to the most similar healthy 
fraction based on the shortest Mahalanobis distance among distances to all 
healthy developmental populations in these 11 dimensions. For stability in cal-
culating the Mahalanobis distance, the covariance matrix Eigen values were set 
to ≥0.2. A cell was designated ‘unclassified’ if none of the distances were below 
the classification threshold (Mahalanobis distance = 11 based on the number 
of dimensions). These single-cell classification parameters were optimized via 
ten-fold cross-validation using cells with known population assignment from 
healthy BM donors. Optimization parameters included additional protein mark-
ers as well as cosine, Manhattan or Euclidian distance metrics. By using BM 
from adult healthy donors as a reference, we assumed that B lymphopoiesis 
proceeded through the same stages of development in both children and adults. 
The percentages of B cell developmental subpopulations in healthy samples are 
not relevant to the performance of the single-cell developmental classifier. As 
such, the gradual decline in the B cell output with age does not confound single-
cell developmental classification under this assumption.

Relapse predictive modeling. To construct a predictive model of relapse, termed 
the DDPR, we allocated 54 patients with BCP-ALL, each with ≥3 years of fol-
low-up data, into training (80% of patients, n = 44) and validation (20% of 
patients, n = 10) cohorts using a random assignment function that preserved 
proportions of cases and controls. A complete set of mass cytometry features 
available to DDPR is listed in Supplementary Table 5. It includes frequency of 
cells in each of five expanded populations (pre-pro-B, pro-BI, pro-BII, pre-BI 
and early progenitors), average expression of 24 proteins in these populations 
(CD10, CD19, CD20, CD22, CD24, CD34, CD38, CD43, CD45, CD58, CD79b, 
CD123, CD127, CD179a, CD179b, HLA-DR, IgHi, IgHs, IKAROS, Ki-67, PAX5, 
RAG1, TdT and TSLPr) and frequency of cells with each of nine activated signal-
ing molecules (p4EBP1, pSTAT5, pPLC-γ2, pAKT, pSYK, pRPS6, pERK1–ERK2, 
pCREB and pIKAROS) in the unperturbed state and in response to each of 
four perturbations (BCR crosslinking, IL-7, TSLP or pervanadate treatment; 
as per Supplementary Table 3). Two clinical features available to DDPR (age 
and white blood cell count at diagnosis) are in Supplementary Table 1. Missing 
values were imputed as a median of all values. All features were scaled using 
their mean and s.d. within the training cohort, and these scaling parameters 
were also applied to the validation cohort. DDPR was built using elastic net22, 
a regularized machine-learning approach that utilizes both L1 and L2 penalty 
types to prevent overfitting. To take advantage of the follow-up data in our 
cohort, relapse was modeled as a time-to-event outcome in a regularized Cox 
proportional-hazard model23. To estimate DDPR predictive performance, we 

used pre-validation24,25. In a ten-fold cross-validation approach, we sequentially 
constructed an elastic-net-regularized Cox model using 90% of the training 
cohort samples and tested that model on the remaining 10% of the training 
cohort samples. We then used all of the training cohort samples to construct the 
final model. Feature-scaling parameters and final DDPR coefficients are listed 
in Supplementary Table 7. To test DDPR predictive performance, we applied 
the final model to the validation cohort. To assess performance, we reported 
an iAUC value6 and a C-statistic27 for censored time-to event data calculated 
using predicted relative risk (with reference to the sample average; RR) values 
within each cohort. To stratify patients into low- and high-DDPR risk groups, 
we selected a RR threshold value (0.9967) that was based on the optimal log-rank 
P value calculated from the fitted RR values within the training cohort. We then 
applied this threshold value to pre-validated (training cohort) and predicted 
(validation cohort) RR values to yield the final DDPR risk group assignments 
for all of the patients (Supplementary Table 1).

Statistical analysis. Data analysis was performed using R statistical software 
(http://www.r-project.org). To test statistical significance between two groups, 
we applied a two-tailed unpaired Student’s t-test. When more than two groups 
were compared, we used Tukey’s honest significance difference test; we included 
a Bonferroni correction for multiple comparisons. When equal variance assump-
tion was not met based on an F test, a Welch’s t-test was used instead of Student’s 
t-test; normality was assessed using the Shapiro–Wilk test. A paired Welch’s t-test 
was used for paired samples. The Kaplan–Meier method was used to estimate 
RFS rates; differences between groups were assessed using the log-rank test. 
DDPR RFS curves were built using predicted risk group assignment for each 
patient (i.e., based on pre-validated RR for the training cohort and predicted RR 
for the validation cohort). To test for synergy between current risk-stratification  
methods and DDPR, we calculated integrated discrimination improvement 
index (IDI), continuous net reclassification improvement (NRI) and median 
improvement (MI) for censored time-to-event data and their statistical signifi-
cance at 5 years31,32.

Life Sciences Reporting Summary. Further information on experimental design 
is available in the Life Sciences Reporting Summary.

Data availability. The mass cytometry data are available at https://github.com/
kara-davis-lab/DDPR/releases.
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in 3,184 patients of the AIEOP-BFM ALL 2000 study. Blood 115, 3206–3214 
(2010).
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Health Organization, Geneva, 2008).

47. Bendall, S.C. et al. Single-cell mass cytometry of differential immune and drug 
responses across a human hematopoietic continuum. Science 332, 687–696 
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platinum-based covalent viability reagent for single-cell mass cytometry. Cytometry 
A 81, 467–475 (2012).
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Life Sciences Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form is intended for publication with all accepted life 
science papers and provides structure for consistency and transparency in reporting. Every life science submission will use this form; some list 
items might not apply to an individual manuscript, but all fields must be completed for clarity. 

For further information on the points included in this form, see Reporting Life Sciences Research. For further information on Nature Research 
policies, including our data availability policy, see Authors & Referees and the Editorial Policy Checklist.

Please do not complete any field with "not applicable" or n/a.  Refer to the help text for what text to use if an item is not relevant to your study. 
For final submission: please carefully check your responses for accuracy; you will not be able to make changes later.

    Experimental design
1.   Sample size

Describe how sample size was determined. We did not predetermine a samples size as and a power calculation could not 
be performed, as this is the first study of its kind. Sample size was determined based on 
availability of samples with sufficient cellular material and annotated clinical metadata. For 
relapse prediction models, samples included in this analysis required at least 3 years of follow 
up from initial diagnosis. 

2.   Data exclusions

Describe any data exclusions. Patient samples that did not have at least 3 years of follow up data from the time of diagnosis 
were excluded from the DDPR relapse prediction modeling. These comprised UPN 60-69, as 
shown in Table S1 . These samples were included in the developmental classification.

3.   Replication

Describe the measures taken to verify the reproducibility 
of the experimental findings.

The patient samples utilized in this work were analyzed in a series of batches. Each sample 
was divided into 5 treatment conditions as described in Table S3. Thus, each sample was 
replicated 5 times and responses across patients were reproducible as well as across batches 
of samples to enable generalization regarding per patient responses and across patient 
responses.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

During the cross-validation construction of the DDPR model, samples were randomly 
assigned to training and validation cohorts using a random assignment in R that preserves 
proportions of cases vs. controls. 

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Investigators were not blinded to group allocation. 

Note: all in vivo studies must report how sample size was determined and whether blinding and randomization were used.

Nature Medicine: doi:10.1038/nm.4505
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

Test values indicating whether an effect is present 
Provide confidence intervals or give results of significance tests (e.g. P values) as exact values whenever appropriate and with effect sizes noted.

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars in all relevant figure captions (with explicit mention of central tendency and variation)

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

All analyses were performed using Cytobank (cytobank.org) and R. Single-cell protein 
expression data were extracted using Bioconductor software (www.bioconductor.org).DREMI 
is available for download at www.c2b2.columbia.edu/danapeerlab/html/dremi.html. The 
developmental classifier and DDPR code is available to editors and reviewers and will be 
made available upon request. FCS files are available on Github (https://github.com/kara-
davis-lab/DDPR/releases). 

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a third party.

Materials, outside of patient samples, utilized in this study are not unique and are available 
for distribution by a third party. All antibodies are commercially available. 

Nature Medicine: doi:10.1038/nm.4505
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9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

All antibodies were validated in human cells (cell lines or primary cells) known to our 
laboratory to be positive or negative controls for a given antibody target.  Mass cytometry 
antibody reagents listed below in the following order:      
 Protein/ Clone/ Lot Number/ Manufacturer/ Metal Isotope/ Surface (S) or Intracellular(I) 
Stain 
      
CD10/ HI10a/ 6155527/ Biolegend/ Gd156/ S 
CD123/ 6H6/ B199259/ Biolegend/ Eu151/ S 
CD127/ HCD127/ B173990/ Biolegend/ Dy162/ S 
CD16/ 3G8/ B175991/ Biolegend/ Yb171/ S 
CD179a/ HSL96/ B129864/ Biolegend/ Sm149/ I 
CD179b/ HSL11/ B179047/ Biolegend/ Gd158/ I 
CD19/ H1B19/ B157781/ Biolegend/ Nd142/ S 
CD20/ 2H7/ B164952/ Biolegend/ Sm147/ S 
CD22/ HIB22/ B165323/ Biolegend/ Nd143/ S 
CD235/ HIR2/ B132247/ Biolegend/ In113/ S 
CD24/ ML5/ B167884/ Biolegend/ Gd160/ S 
CD3/ HIT3a/ B151232/ Biolegend/ Er170/ S 
CD33/ HIM3-4/ B183522/ Biolegend/ Yb171/ S 
CD34/ 8G12/ B163230/ Biolegend/ Nd148/ S 
CD38/ HIT2/ B170151/ Biolegend/Er168/ S 
CD43/ CD43-10G7/ B149905/ Biolegend/ Er167/ S 
CD45/ HI30/ B159992/ Biolegend/ In115/ S 
CD58/ TS2-9/ B145718/ Biolegend/ Tm169/ S 
CD61/ VI-PL2/ B176028/ BD Biosciences/ In113/ S 
CD79b/ CB3-1/ 4203934/ Biolegend/ Nd146/ S 
HLA-DR/ L243 B161762/ Biolegend/ Yb174/ S 
IgHi/ polyclonal/ 10689/ Invitrogen/ Eu153/ I 
IgHs/ polyclonal/ 10689/ Invitrogen/ Lu175/ S 
IKAROS/ D10E5 2/ Cell Signaling Technology/ Nd145/ I 
IgL kappa/ MHK-49/ B162243/ Biolegend/ Sm154/ I 
IgL lambda/ MHL-38/ B171739/ Biolegend/ SM154/ I 
PAX5/ 1H9/ B178991/ eBioscience/ Ho165/ I 
RAG1/ D36B3/ 3968BF/ Cell Signaling Technology/ Dy163/ I 
TdT/ E17-1519/ 21361/ BD Biosciences/ Dy164/ I 
CRLF2/ 1B4/ E028811/ eBioscience/ Dy161/ S      
AKT (pS473)/ 193H12/ 4060BF/ Cell Signaling Technology/ Tb159/ I 
4EBP1(pT37/T46)/ 236B4/ 18/ Cell Signaling Technology/ Nd144/ I 
cPARP/ F21-852/ 5089576/ BD Biosciences/ La139/ I 
CREB (pS133)/ 87G3/ 9198BF/ Cell Signaling Technology/ Yb176/ I 
ERK1/2 (pT202/pY204)/ D13/ 4370BF/ Cell Signaling Technology/ Yb173/ I 
Ki-67/ B56/ 3305519/ BD Biosciences/ Sm152/ I 
IKAROS (pS63)/ STA9/ 1/ Epitomics (made for Nolan lab)/ Gd155/ I 
PLCg2 (pY759)/ K86-689.37/ 26057/ BD Biosciences/ Pr141/ I 
rpS6 (pS235/pS236)/ N7-548/ 4044686/ BD Biosciences/ Yb172/ I 
STAT5 (pY694)/ 47/ 4044688/ BD Biosciences/ Nd150/ I 
ZAP70/SYK (pY319/pY352)/ 17a/ 85582/ BD Biosciences/ Er166/ I

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used in the study.

b.  Describe the method of cell line authentication used. No eukaryotic cell lines were used in the study.

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

No eukaryotic cell lines were used in the study.

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No eukaryotic cell lines were used in the study.

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide all relevant details on animals and/or 
animal-derived materials used in the study.

No animals were used in the study.

Nature Medicine: doi:10.1038/nm.4505
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Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

Clinical data were available for the samples used in this study, including minimal residual 
disease (MRD) risk group and final risk assignment as per AIEOP-BFM ALL 2000 protocol 
(ClinicalTrials.gov identifier: NCT00613457), diagnostic cytogenetics, age at diagnosis, gender, 
white blood cell count at diagnosis, date of diagnosis, date of relapse, and date of the last 
follow-up.

Nature Medicine: doi:10.1038/nm.4505
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