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Selective differentiation of naive T cells into multipotent  
T cells is of great interest clinically for the generation of 
cell-based cancer immunotherapies. Cellular differentiation 
depends crucially on division state and time. Here we adapt 
a dye dilution assay for tracking cell proliferative history 
through mass cytometry and uncouple division, time and reg-
ulatory protein expression in single naive human T cells dur-
ing their activation and expansion in a complex ex vivo milieu. 
Using 23 markers, we defined groups of proteins controlled 
predominantly by division state or time and found that undi-
vided cells account for the majority of phenotypic diversity. 
We next built a map of cell state changes during naive T-cell 
expansion. By examining cell signaling on this map, we ratio-
nally selected ibrutinib, a BTK and ITK inhibitor, and adminis-
tered it before T cell activation to direct differentiation toward 
a T stem cell memory (TSCM)-like phenotype. This method for 
tracing cell fate across division states and time can be broadly 
applied for directing cellular differentiation.

Cellular differentiation is a continuous and coordinated process 
that integrates cell-intrinsic and extrinsic signals, leading to changes 
in phenotype, proliferation and death. The linkage of cell division 
with time during differentiation, especially in human cell systems, 
remains elusive. Multiple cellular processes have been implicated in 
T-cell fate selection during an immune response, including asym-
metric distribution of polarity proteins during initial division1 and 
the varying cell-autonomous capabilities of individual antigen-spe-
cific T cells2,3, but the relative contributions of these two processes 
to T-cell fate selection are not well defined4. Moreover, compari-
son of time-dependent and division-state-dependent changes to 
our knowledge has not yet been performed in any cell context. An 
improved model of early T-cell fate choices across time and divi-
sions will help clarify the mechanistic underpinnings and serve as a 
guide in T-cell engineering efforts for clinical applications.

Mapping differentiation across time and division states in com-
plex cellular systems requires simultaneous high-throughput mea-
surements of phenotype, function and proliferative history in single 
cells across multiple time points. Despite advances in sequencing-
based techniques for lineage tracing5, a compatible method for mea-
suring proliferative history is unavailable, and spectral overlap in 
flow-cytometry-based methods6 precludes high-dimensional cell 

phenotyping across divisions. Cytometry by time of flight (CyTOF; 
mass cytometry)7 is a powerful technique for high-throughput 
proteomic monitoring of single-cell phenotypes, but cannot yet 
track proliferative history. Starting with a fluorescent dye dilution 
approach8,9, we have created a mass cytometry assay whereby the 
proliferative history of single cells across 0–7 divisions can be traced 
in complex cell mixtures while performing highly multiplexed sin-
gle-cell analyses for function and phenotype.

This approach enabled understanding of primary T-cell differen-
tiation in the context of T-cell expansion for cancer immunotherapy10 
and computationally uncouples time in culture from cell division 
state. By examining cell signaling on a map of cell state transitions, we 
selected treatment with the small molecule ibrutinib before expan-
sion to skew early naive T-cell differentiation toward a subset resem-
bling clinically desirable T stem cell memory (TSCM) cells11,12.

Fluorescent dye dilution assays6, originally developed for T cells8, 
are useful for counting cell divisions by flow cytometry. To adapt 
a carboxyfluorescein succinimidyl ester (CFSE) dilution assay8,9 
to mass cytometry, we exploited the structural similarity between 
CFSE and fluorescein isothiocyanate (FITC) to track changes in 
CFSE signal via a metal-labeled anti-FITC antibody (Fig. 1a). 
Dividing cells pass ~50% of CFSE to each daughter cell, providing a 
proxy for counting cell divisions.

With optimal CFSE detection conditions for mass cytometry 
(Supplementary Data 1), we confirmed nontoxic, homogeneous 
labeling of primary human CD8+ T cells with 80 µM CFSE in the 
presence of serum6 (data not shown). In contrast to anti-FITC 
monoclonal antibodies, a polyclonal antibody produced a strong 
and specific signal (Fig. 1b and Supplementary Figs. 1a–e). Flow 
cytometry and mass cytometry yielded an equivalent CFSE signal 
(Fig. 1c), with minimal background for mass cytometry, as is typi-
cal7. Lack of autofluorescence enabled us to detect an equivalent 
CFSE signal in other cell types, such as monocytes and dendritic 
cells (Supplementary Fig. 1f).

To test this method in resolving division states, we followed 
T-cell proliferation during ex vivo expansion for cancer immu-
notherapy13. We selected the rapid expansion protocol (REP)10 as 
a model system (Fig. 1d) and could distinguish the CFSE-traced  
T cells from unlabeled accessory cells and discern ≥5 cell divisions 
using both flow and mass cytometry (Fig. 1e). Using mathematical 
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Fig. 1 | CFSE can be used to obtain proliferative history and trace cells of interest in complex cultures by mass cytometry. a, A strategy for 
adapting CFSE dye dilution assay to mass cytometry. Since both CFSE and FITC are derivatives of fluorescein, CFSE can be quantified by mass 
cytometry using intracellular staining with an anti-FITC antibody conjugated to a reporter metal isotope. With each division, daughter cells inherit 
~50% of the CFSE, providing a proxy for estimating the number of cell divisions (proliferative history). b, Mass cytometry titration of polyclonal 
[172Yb]anti-FITC on human CD8+ T cells, with the optimal concentration highlighted (red box). c, Equivalent CFSE signal obtained from human 
CD8+ T cells analyzed in parallel by flow cytometry and mass cytometry, with the near-zero [172Yb]anti-FITC background highlighted (red box).  
d, Experimental outline for tracing proliferative history of naive CD8+ T cells in REP as a model system. CFSE-labeled naive human T lymphocytes 
are induced to proliferate by CFSE-negative accessory cells, including monocytes (Mo), that present an anti-CD3ε antibody via Fcγ receptors 
(FcγRs) and express co-stimulatory molecules. IL-2 is added after 48!h. e, Proliferative history of CD8+ T cells was similar whether measured 
directly by flow cytometry or indirectly using [172Yb]anti-FITC by mass cytometry. A division ID (red arrows) was assigned to each cell falling into 
the ≥80% confidence region (blue); a division ID of –1 was assigned otherwise. Division IDs were added to the original file, enabling downstream 
analysis in software of choice, such as Cytobank. f, Spearman correlation analysis comparing percentage of cells falling into each division state in 
samples analyzed in parallel by flow cytometry and mass cytometry (n!=!26 time-series samples from 6 REP cultures). g, CFSE signal reduction per 
division was calculated by geometric means from cells in f. Box plots show quartiles with a band at median, whiskers indicating 1.5 interquartile 
range (IQR), and outliers shown separately. A red dashed line indicates the expected 50% reduction. The antibody was titrated once; results in 
c,e–g are from 1 experiment representative of 3 experiments. Results in b,c and in e–g were obtained using the antibody panels in Supplementary 
Data 1 and Supplementary Data 2, respectively.
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modeling based on local regression, we assigned division identifi-
ers (IDs) to all cells falling into the ≥80% confidence region. The 
percentage of cells assigned to each division was nearly identi-
cal for samples analyzed by flow and mass cytometry (Spearman’s 
rank correlation coefficient 0.978; Fig. 1f). Correlation in CFSE 
signal was also high for these samples (Spearman’s rank correla-
tion coefficient 0.997; Supplementary Fig. 2a). To estimate loss of 
signal without division, we applied linear regression to cells falling 
into the same division category over multiple days. If drifts were 
the same for flow and mass cytometry, we would expect the slope 
to be 1. We observed that this slope was consistently lower than  
1 over division IDs 0–7 (mean ± s.d. = 0.496 ± 0.161; Supplementary  
Fig. 2b), suggesting that CFSE fluorescence is less stable than the 
CFSE epitopes detected in mass cytometry. As expected, CFSE 
signal decreased ~50% each time cells divided, and this was true 
irrespective of the cytometry method used (Fig. 2d) or time point 
assessed (Supplementary Fig. 2c).

With a panel of T-cell receptors relevant to immunotherapy 
and T-cell fate specification11,12 (Supplementary Data 2–6), we rec-
onciled early steps in naive CD8+ T-cell differentiation with pro-
liferation in REP. Although expression of a few proteins across 
divisions has previously been analyzed by flow cytometry14, a high-
dimensional analysis has not been performed. We tracked division 
state- and time-dependent dynamics of 23 markers after using  
13 parameters for stringent selection of CFSE+ CD8+ T cells 
(DNA, size, viability, apoptotic status and lineage; Supplementary  
Fig. 3 and Supplementary Data 2) and additional parameters for 
data quality (normalization, barcoding). Tracking expression of 
individual proteins in CD8+ T cells from the naive resting state 
showed that expression of some markers changed markedly as 
cells divided (Supplementary Fig. 4). For example, CD69low T cells, 
which may be mistaken for poorly activated, had in fact divided the 
most, whereas regulatory protein expression (e.g., LAG3 and BTLA) 
remained consistent across divisions.

To computationally disentangle division-state-dependent from 
time-dependent changes, we normalized average marker expression 
to either division 0 for each day or the earliest time point for each 
division (Fig. 2a). Here, division-state-dependent changes, espe-
cially upregulation, were more pronounced than time-dependent 
changes in early T-cell differentiation during ex vivo expansion 
(Fig. 2b). Moreover, time-dependent changes were distinct from 
division-state-dependent changes. For example, expression of the 
activation molecule CD69 decreased with division at each time 
point yet changed little within each division over time. A multivari-
ate regression model quantified the relative effects of division and 
time on levels of each regulatory protein (Fig. 2c). The strongest 
division-state-dependent effect was the switch from the CD45RA to 
CD45RO isoform, an important event in T-cell memory specifica-
tion. In contrast, reduced phosphorylation of ribosomal protein S6 
(pRPS6), downstream of mTOR, was predominantly time-depen-
dent. Besides the expected connection between differentiation and 
time, the consistency and magnitude of division-state-dependent 
changes indicate a fundamental link between proliferation and dif-
ferentiation of naive CD8+ T cells in this expansion setting.

Notably, analysis of division state- and time-dependent changes 
revealed that phenotypic diversity, estimated by s.d. in individual 
protein expression, decreased consistently in a division- but not 
time-dependent manner for the majority of molecules examined 
(Supplementary Fig. 5). This, together with the link between dif-
ferentiation and proliferation, prompted us to exploit the high-
dimensional single-cell data to broadly map naive CD8+ T-cell 
differentiation across division states.

To visualize high-dimensional single-cell data, we built force-
directed graphs15 using Vortex software16. The resulting maps aid 
the visualization of continuous processes, such as cellular differen-
tiation15. Here, edges hold cells together with constant spring-like 

forces while forces proportional to cell dissimilarity in multidimen-
sional protein expression mediate repulsion15,16. These repulsive and 
attractive forces eventually converge to a balanced state in which 
similar cells are located near each other and dissimilar cells are far 
apart. (This is not always the case in t-distributed stochastic neighbor 
embedding plots.) We modified Vortex to only allow edge connec-
tions either between consecutive time points, as in the FLOW-MAP 
algorithm17, or between subsequent divisions to take advantage of 
our proliferative history data. This feature is now publicly available 
in Vortex. The single-cell phenotypic maps presented here connect 
cells only within neighboring division states (–1, 0, + 1).

We initially focused on day 3, when the majority of cells were in 
divisions 0 or 1 (Fig. 3a). At this early time in naive CD8+ T-cell dif-
ferentiation, undivided cells unexpectedly occupied the majority of 
phenotypic niches (dark green nodes, Fig. 3b). Partial cell activation 
is unlikely to contribute to this undivided cell diversity, since 99.2% of 
undivided cells in this culture were CD69high (Supplementary Fig. 4b).  
We annotated this phenotypic map on the basis of all single-cell 
markers quantified (Supplementary Fig. 6). To understand how cells 
advance through phenotypic space, we applied diffusion maps18. 
This approach identifies the most likely sequence of cell state transi-
tions, a metric called diffusion pseudo-time (DPT; Supplementary 
Fig. 7). Overlaying DPT onto our map exposed a continuum of phe-
notypes from the least differentiated to the two most differentiated 
states (Fig. 3c), which overlapped with three prominent regions in 
Fig. 3b. Importantly, undivided cells had the highest DPT diversity 
(estimated by s.d.) and completely covered the range of DPT val-
ues (Fig. 3d). Using lasso19, we found that CD25 and CD137 had 
the highest coefficients predicting DPT1 and DPT2, respectively 
(Supplementary Data 7). This finding was corroborated by a cor-
relation analysis (Supplementary Data 7).

As an independent metric of high-dimensional cellular diversity, 
we calculated angular distance to an average cell within each divi-
sion (Fig. 3e). This metric confirmed that undivided cells had the 
highest phenotypic diversity, and phenotypic diversity significantly 
decreased with successive divisions (Fig. 3f). This observation held 
true on subsequent days (Fig. 3g and Supplementary Fig. 8).

To obtain an orthogonal view of diversity during early differen-
tiation of naive CD8+ T cells without a priori target bias, we per-
formed droplet-based single-cell RNA-sequencing (RNA-seq) on 
CD8+ T cells prospectively isolated from divisions 0, 1 or 2 on day 
3 of REP (Fig. 3h and Supplementary Fig. 9). We then selected the 
1,000 most variably expressed genes to construct a force-directed 
graph, which provides insight into biological identity of genes 
underlying cellular diversity (Fig. 3i and Supplementary Figs. 9–11). 
Undivided cells again occupied the majority of phenotypic niches 
and had a significantly higher phenotypic diversity than cells that 
divided either once or twice (Fig. 3j and Supplementary Fig. 12). 
Together, these data confirm that undivided CD8+ T cells display 
the largest phenotypic diversity in our system.

By day 7 of differentiation, naive CD8+ T cells expanded into 
new phenotypic niches and converged onto two main subpopula-
tions (Fig. 4a,b and Supplementary Figs. 13–15), which resembled 
TSCM and dysfunctional cells. TSCM are minimally differentiated anti-
gen-experienced T cells that are clinically favorable for immuno-
therapy because they show excellent engraftment, persistence and 
multifunctionality11,12. Clinically undesirable dysfunctional T cells 
express two or more inhibitory receptors and have poor prolifera-
tive capacity and effector functions11. Here, we define TSCM-like cells 
as antigen-experienced (divided following T-cell antigen receptor 
(TCR) engagement) CD45RAhigh CD45ROlow CD27high CD127high 
CCR7high CTLA4low LAG3low PD1low CD57low, and dysfunctional-
phenotype cells as antigen-experienced CD27low CTLA4high LAG3high 
PD1high (refs. 11,12,20). Relative to TSCM-like cells, dysfunctional-phe-
notype cells were CD45RAlow CD45ROhigh CD5low CD7low CD25high 
CD27low CD52low CD69high CCR7low and contained a subpopulation 
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expressing the CD57 senescence marker11. Since TSCM cells are simi-
lar to naive T cells in their protein expression12, allowing connec-
tions only among cells in consecutive division states ensured that 
the true division history defined cell locations in the final force-
directed map. This map allowed us to devise a simple fluorescence-
activated cell sorting (FACS) scheme to prospectively isolate and 
test functional properties of TSCM-like and dysfunctional-phenotype 
subsets (Fig. 4a, right, and Supplementary Fig. 16). Upon re-stim-
ulation, TSCM-like cells had greater proliferative potential, greater 
resistance to apoptosis and less dysfunctional marker expression. 
Using intracellular staining, we confirmed that TSCM-like cells pro-
duced more interleukin (IL)-2 and less interferon (IFN)-γ and tumor 
necrosis factor (TNF)-α (Supplementary Fig. 17), as expected for  
TSCM-enriched cells21.

DPT analysis confirmed the minimally differentiated 
state of TSCM-like cells as DPTlow (Fig. 4b and Supplementary  
Fig. 13). Notably, DPT correlated with pRPS6, which is indica-
tive of mTOR pathway activity (Fig. 4a,b, Supplementary  
Figs. 13–15 and Supplementary Data 7). The DPT–pRPS6  
correlation remained irrespective of division state (Supplementary 
Fig. 18, black box), but pRPS6 decreased the most with time  
(Fig. 3c). These findings, together with high undivided cell diver-
sity, led us to hypothesize that blocking signaling upstream of 
pRPS6 before the first division would direct naive T-cell differ-
entiation toward the minimally differentiated (DPTlow) TSCM-like 
fate (Fig. 4a). To test this, we selected an inhibitor of the mTOR 
pathway, rapamycin, and an inhibitor of the upstream TCR sig-
naling pathway, ibrutinib (a dual BTK (Bruton’s tyrosine kinase) 

a

Mean expression
(log2 of ratio)

−1 10

%
 c

el
ls

PD1

ICOS
IL2Rα

ADPRC1

TIM3

LAG3
CXCR3

FAS

PTPRC

CCR7

IL7Rα

SLAMF1

OX40

BTLA

HNK1

4-1BB

Alias Class

Similar to
division 0

Up
relative to
division 0

Down
relative to
division 0

Marker of CD8+ T cells
Defines TN, TEff, TEM,
TCM and TSCM subsets

Co-stimulatory receptor
Inhibitory receptor or
senescence marker

Activation marker
Functional marker
(proliferation, translation)

Min Max0

CD69
expression

(log2 of ratio)

0 1 2 3 4 5 6 7

Original data
Division ID

0
3
4
5
7

D
ay

Naive
CD8+

T cells

Ratio over naive

Division-state-
dependent

changes only

Ratio over
division 0

Time-
dependent

changes only

Ratio over
earliest day

Exclude naive

Time-
dependent

changes only
(activated cells)

Division-state-dependent changes

TT T

Up

Down

SameT
im

e-
de

pe
nd

en
t

CD45RA
CD69
CD137
CD127
CD57
CD28
CD8α
CD45
CD3ε
CD134
CD197
CD150
CD95
CD38
pRPS6
CD279
CD27
CD272
CD223
CD183
CD7
Ki-67
CD366
CD278
CD25
CD45RO

Division ID: 0 1 2 3 4 5 6 70 1 2 3 4 5 60 1 2 3 4 50 1 2 3

Day 3 Day 4 Day 5 Day 7

Division-state-dependent expression

pRPS6
CD127
CD137
CD27
CD366
CD278
CD25
Ki-67
CD28
CD134
CD69
CD45RA
CD150
CD279
CD57
CD183
CD3ε
CD7
CD223
CD8α
CD45
CD95
CD197
CD38
CD272
CD45RO

3 4 5 7

Div 0

Time-dependent expression

Day: 3 4 5 7

Div 1

3 4 5 7

Div 2

3 4 5 7

Div 3

4 5 7

Div 4

4 5 7

Div 5

5 7

6

7

7

Multivariate regression model

Expression = α × Time + β × Division

−0.4 0.40

Coefficient

0 3015

–log10(P )

C
D

45
R

A
C

D
69

C
D

13
7

pR
P

S
6

C
D

27
C

D
25

C
D

19
7

C
D

13
4

C
D

27
9

C
D

15
0

C
D

12
7

C
D

28
C

D
22

3
C

D
57

C
D

27
2

C
D

45
C

D
8α

C
D

36
6

C
D

3 ε
C

D
95

C
D

7
C

D
18

3
C

D
27

8
K

i-6
7

C
D

38
C

D
45

R
O

Time
Division
Time
Division

α
β

α P
β P

b

c

Fig. 2 | Uncoupling time and division state in expansion of naive CD8+ T cells shows that early differentiation is linked to both time and proliferation. 
a–c, Naive CFSE-labeled T cells were expanded using REP, collected on days 0,3,4,5 and 7 (n!=!26 time-series samples from 6 cultures), analyzed by 
mass cytometry using the antibody panel in Supplementary Data 2, and gated on live non-apoptotic CFSE+ CD8+ T cells. a, A normalization scheme to 
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and ITK (IL-2-inducible T-cell kinase) inhibitor that inhibits 
ITK downstream of the TCR22) and administered them at higher 
concentrations during the initial activation (days 0–2) than 
during the high proliferative phase (days 3–7). We found that 

ibrutinib skewed T-cell differentiation away from the pRPS6high 
path and toward the pRPS6low path ending at the TSCM-like state  
(Fig. 4b,c, Supplementary Figs. 15 and 19, and Supplementary 
Data 8). At the concentration tested, rapamycin reduced overall 
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proliferation and hindered differentiation by locking T cells in 
a naive-like CD127high state (Supplementary Figs. 19 and 20 and 
Supplementary Data 8). Thus, early tuning of TCR or mTOR sig-
naling had pronounced effects on phenotypic output.

Mechanistically, ibrutinib affected differentiation early in time 
and division. Namely, on day 3 all divisions had significantly lower 
DPT (division 0 P = 2.57 × 10–118, division 1 P = 2.26 × 10–65, Wilcoxon 
Mann–Whitney U test with Bonferroni correction for multiple 
hypothesis testing; Supplementary Fig. 19c) and were closer to the 
TSCM-like state than vehicle-treated cells (Supplementary Fig. 21). 
Delaying ibrutinib treatment until day 3 reduced the fate skewing 
effect (Supplementary Fig. 22). Ibrutinib reduced apoptosis and cell 
death in both pRPS6+ and pRPS6– compartments (Supplementary 
Data 8), arguing for redirection of naive-derived CD8+ cells toward 

the TSCM-like differentiation endpoint and against drug-induced 
subset selection.

TSCM subset enrichment in chimeric antigen receptor (CAR)-
engineered T cells enhances intracellular production of IL-2, but not 
of effector cytokines IFN-γ and TNF-α, when examined in bulk21. 
Similarly, ibrutinib enrichment of TSCM-like subset improved intra-
cellular production of IL-2, but not of IFN-γ and TNF-α, in bulk 
CD8+ T cells (Supplementary Fig. 23). As expected21, the benefit of 
TSCM enrichment was the increased IFN-γ and TNF-α production by 
effector T cells generated in the presence of ibrutinib (Supplementary 
Fig. 24). Adding ibrutinib until day 3 only was sufficient to partially 
skew cells toward TSCM-like fate and superior to both vehicle and con-
tinuous ibrutinib treatment in enhancing intracellular IL-2 and IFN-γ 
production by bulk CD8+ T cells (Supplementary Figs. 23–25).
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Uncoupling the sequence of cellular transitions through pheno-
typic space in the context of time and division states is essential for 
creating better models of cellular differentiation. Here we present 
a method for simultaneously tracing the proliferative history and 
phenotype of chemically labeled cells using highly multiplexed sin-
gle-cell mass cytometry. While applied to primary human T cells 
here, we believe that this approach is generally applicable to tracing 
cell fate in complex mixtures for a variety of primary samples and 
cell lines23, as well as to animal models of transplantation in which 
input material or genetic tracing could be limited.

We found early differentiation of naive CD8+ T cells during 
expansion for immunotherapy to be linked to division state. Using a 
comprehensive panel of T-cell specialization and exhaustion mark-
ers, we established that undivided cells had the highest phenotypic 
diversity. Unbiased single-cell RNA-seq confirmed this observation 
and identified gene expression programs driving diversity. While 
we uncovered some mechanisms that linked division state and early 
cell fate choices, we did not investigate how cells acquired diverse 
phenotypes without division. Possibilities include the intrinsic pre-
disposition of clonally derived naive T cells to produce diverse pro-
portions of effector and memory populations2,3, differences in TCR 
signaling, and co-receptor engagement24,25. Our results do not con-
tradict asymmetric division, which influences T-cell fate1,4.

The origin of TSCM cells is of great interest12. While we did not 
trace fates of individual cells over time, our data suggest that, in the 
context of REP, TSCM-like cells arise from a CD45RAhigh subpopula-
tion with low pRPS6 signaling. These cells are CD25low, indicating 
that our data are consistent with observations that CD25high CD8+ 
T cells give rise to terminally differentiated and short-lived effector 
cells, whereas CD25low cells eventually give rise to functional long-
lived memory cells26. True TSCM and dysfunctional states are more 
distant and not fully represented in REP10, a model system that was 
not designed to mimic the normal T-cell differentiation processes. 
Further studies on the mechanisms linking proliferation to differen-
tiation in vivo could benefit from this method.

We believe that our approach of identifying optimal interven-
tion strategies on the basis of high-resolution maps of normal cel-
lular differentiation will be broadly applicable to guiding the fate of 
endogenous or engineered T lymphocytes in cancer immunotherapy  
(Fig. 4d). Here, we selected ibrutinib to direct naive T-cell fate toward 
the TSCM-like state. While ibrutinib reduced pRPS6 signaling and 
enhanced the expansion into our TSCM-like cell compartment, we can-
not rule out indirect effects of the inhibitor on antigen-presenting cells. 
In the future, ibrutinib could be useful for directing tumor-infiltrating 
T lymphocytes or CAR T cells toward TSCM or other desired fates, which 
is an important direction in cancer immunotherapy research12,21. Our 
results may also help explain the recently observed TSCM expansion in 
patients with chronic lymphocytic leukemia receiving ibrutinib27, as 
well as the improvement in CAR T efficacy when administered after or 
with ibrutinib for treatment of this disease in the clinic28–30.

This framework for tracing and directing the fate of labeled T 
cells should be broadly useful in stem cell biology and hematology 
and could improve clinical outcomes in cancer immunotherapy.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability, and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41587-019-0033-2.
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Methods
Cells. Deidenti"ed human blood was obtained from healthy adult donors under 
informed consent (Stanford Blood Center, Palo Alto, CA). Use of these samples was 
approved by Stanford’s Institutional Review Board. Peripheral blood mononuclear 
cells (PBMCs) were isolated from Trima Accel leukocyte reduction system (LRS) 
chambers (Terumo BCT, Lakewood, CO) using Ficoll-Paque Plus (GE Healthcare, 
Chicago, IL, USA) density gradient centrifugation according to the manufacturer’s 
instructions. For long-term storage, PBMCs were resuspended in FBS with  
10% DMSO and stored in liquid nitrogen at a density of 1 × 107–5 × 107 cells/mL.

Cryopreserved PBMCs were thawed into cell culture medium (CCM; RPMI 
1640 containing 10% FBS, 1× l-glutamine and 1× penicillin/streptomycin; 
Thermo Fisher Scientific Waltham, MA, USA) supplemented with 25 U/mL 
benzonase (Sigma-Aldrich, St. Louis, MO, USA). Cells were then pelleted for 
5 min at 250 g, resuspended in 10 mL CCM, rested at 37 °C and 5% CO2 for 60 min, 
filtered through a 40-µm strainer, and counted. Where indicated, naive T cells were 
enriched using a Naïve Pan T Cell Isolation Kit (Miltenyi Biotec #130-097-095, 
Bergisch Gladbach, Germany) according to manufacturer’s instructions.

CFSE labeling. Unless otherwise noted, carboxyfluorescein succinimidyl ester 
(CFSE) labeling was performed as described by Quah and Parish6,31. Briefly, 50 µg 
carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) was reconstituted in 
18 µL DMSO (CellTrace CFSE Cell Proliferation Kit, Thermo Fisher Scientific 
#C34554) to create a 5 mM stock immediately before labeling. Cells were 
resuspended in 1 mL warm CCM and transferred into a new 15 mL Falcon tube 
lying horizontally. A drop containing 110 µL warm PBS was placed on a side of 
the tube, and 17.6 µL of 5 mM CFDA-SE was diluted into the drop. The tube was 
then quickly capped and turned upside right while being vortexed gently, yielding 
a final concentration of 80 µM CFDA-SE Cells were incubated for 5 min at room 
temperature, quenched by adding 9 mL warm CCM, and washed twice with 10 mL 
warm CCM. When only naive T cells were labeled with CFSE, they were combined 
with the CFSE-negative PBMC fraction devoid of naive T cells after labeling to 
restore original cell proportions. All centrifugation steps for live cells were done for 
5 min at 250 g, room temperature. CFSE and labeled cells were protected from light 
throughout the experiment.

During protocol optimization, we tested the above labeling protocol for  
0.1 × 107–10 × 107 cells and CFSE concentrations in range of 0.2 µM to 320 µM.  
We assessed long-term cell viability and proliferation. We also tested 
manufacturer’s labeling protocol for CFSE concentrations of 0.2 µM to 20 µM,  
as well as another CFSE supplier (Biolegend #422701, San Diego, CA, USA).

Expansion and treatment of primary human T cells. T cells were induced 
to proliferate using the rapid expansion protocol (REP) for adoptive transfer 
therapies10. Briefly, ~4 × 107 cells were plated into a well of a 24-well plate with 
2 mL CCM and 600 ng anti-CD3ε antibody (clone OKT3, Biolegend #317304). 
Where indicated, cells were pretreated with vehicle (DMSO), ibrutinib (PCI-32765; 
Cellagen Technology #C7327, San Diego, CA, USA; 700 ng/mL or 1.59 µM) or 
rapamycin (Cell Signaling Technology #9904 S, Danvers, MA, USA; 50 ng/mL or 
54.70 nM) for 30 min. Starting at 48 h after activation, cells were maintained at  
~2 × 106 cells/mL in CCM containing 300 ng/mL anti-CD3ε antibody and 50 U/mL 
(5 ng/mL) recombinant human IL-2 (PeproTech #200-02, Rocky Hill, NJ, USA) and 
relevant concentrations of chemical inhibitors (ibrutinib: 700 ng/mL or 1.59 µM on 
days 0–2, which was reduced to concentrations similar to those attained in vivo in 
mice32,33 of 140 ng/mL or 318 nM on days 3–7; rapamycin: 50 ng/mL or 54.70 nM 
on days 0–2, which was reduced to concentrations similar to those attained in vivo 
in mice34,35 of 10 ng/mL or 10.94 nM on days 3–7). Where indicated, ibrutinib was 
added only on either days 0–2 or days 3–7, with vehicle on the remaining days. 
In initial experiments, we tested a lower concentration of ibrutinib (140 ng/mL 
on days 0–7), whereupon the skewing effect was reduced (data not shown), and a 
higher concentration of ibrutinib (7 µg/mL on days 0–2, 1.4 µg/mL on days 3–7), 
whereupon we observed cell death and no proliferation (data not shown), before 
selecting the above ibrutinib treatment regimen. Samples containing 30% of cells 
from each condition were collected on days 0, 3, 4, 5 and 7, and then fixed and 
stored at –80 °C for flow cytometry and mass cytometry analyses.

Analysis of TSCM-like and increased-dysfunction subsets. To compare the abilities 
of putative TSCM-like and dysfunctional-phenotype cells to proliferate, persist and 
maintain a beneficial phenotype, naive CFSE+ T cells were cultured using REP for 7 d  
to form these subsets. On the basis of the observed pattern of protein expression 
by day 7 (Supplementary Figs. 13 and 14), we defined a FACS staining panel and 
gating strategy (Supplementary Fig. 16b). Fc receptors were blocked using Human 
TruStain FcX (Biolegend #422302) following the manufacturer’s instructions. 
Surface antibody staining was performed with anti-CD3ε–V500 (clone UCHT1, 
BD Biosciences #561416, Franklin Lakes, NJ, USA), anti-CD8α–PerCP (clone 
SK1, BD Biosciences #347314), anti-CD27–PE–Cy7 (clone O323, Biolegend 
#302837), anti-CD45RA–AlexaFluor700 (clone HI100, Biolegend #304119) and 
anti-CD279–PE (PD1; clone EH12.2H7, Biolegend #329905) antibodies for 30 min 
on ice in FACS buffer (PBS with 2% human serum and 2 mM EDTA). Cells were 
then washed once with FACS buffer and stained with 7-AAD (Biolegend #420404) 
to exclude dead cells following the manufacturer’s instructions. Next, cells were 

resuspended in FACS buffer to sort out putative TSCM and dysfunctional subsets on 
FACS Aria II (BD Biosciences). The post-sort purity of each subset was > 90%.

To assess the functional properties of the putative TSCM-like and dysfunctional 
subsets, we relabeled the sorted cells with CFSE and cultured with new autologous 
CFSE-negative accessory cells using REP for 3 d (Supplementary Fig. 16a). To 
quantify the percentage of cells in S phase, the culture medium was supplemented 
with 100 µM 5-iodo-2′-deoxyuridine (IdU; Sigma-Aldrich #I7125-5G) 30 min 
before sample collection.

Intracellular cytokine production. To assess intracellular production of IL-2, 
IFN-γ and TNF-α at the indicated collection time points, cells were resuspended at 
106 per mL and stimulated with 50 ng/mL phorbol 12-myristate 13-acetate (PMA; 
Sigma-Aldrich #P8139, dissolved in ethanol) and 500 ng/mL ionomycin (Sigma-
Aldrich #I0634, dissolved in ethanol) in presence of 1× brefeldin A (Biolegend 
#420601) for 4 h. Cells were stained using the antibody panel in Supplementary 
Data 5 and assessed by mass cytometry.

Mass cytometry. Samples were processed as previously described7. To stain cells 
for viability, cisplatin36 (Sigma-Aldrich #P4394) was reconstituted to 100 mM in 
DMSO and incubated at 37 °C for 3 d to prepare a stock solution, which was then 
stored in aliquots at –20 °C. Cell pellets were resuspended in 1 mL PBS containing 
0.5 µM cisplatin, gently vortexed, incubated 5 min at room temperature, quenched 
with 3 mL CCM, pelleted, and resuspended in 1 mL CCM. Cells were fixed by 
adding 16% paraformaldehyde (PFA; Electron Microscopy Sciences, Hatfield, PA, 
USA) to a final concentration of 1.6%, gently vortexed, incubated 10 min at room 
temperature, and washed twice with cell staining media (CSM; PBS with 0.5% BSA, 
0.02% sodium azide) to remove residual PFA. All centrifuging steps for fixed cells 
were done for 5 min at 600 g, 4 °C. Cell pellets were optionally stored at –80 °C.

With the exception of titrations, samples were palladium-barcoded and pooled 
as described37 to improve staining consistency. Fc receptor blocking was performed 
with Human TruStain FcX (Biolegend #422302) following the manufacturer’s 
instructions to prevent nonspecific antibody binding. Antibodies against surface 
antigens were pooled into a master mix in CSM yielding 50 µL (350 µL if barcoded) 
final reaction volumes per sample and filtered through a 0.1-µm filter (Millipore 
#UFC30VV00, Billerica, MA, USA) for 5 min at 1,000 g to remove antibody 
aggregates. Antibody master mix was then added to each sample, and cells were 
resuspended and incubated 30 min at room temperature. Mass cytometry antibody 
panels are listed in Supplementary Data 1–5. With the exception of antibodies 
purchased from Fluidigm (South San Francisco, CA, USA), all mass cytometry 
antibodies that were conjugated to reporter metal isotopes in-house were titrated 
to determine optimal staining concentrations before incorporating that antibody 
into a staining panel. Antibodies were conjugated using the MaxPar Antibody 
Conjugation Kit (Fluidigm) and titrated on cells both positive and negative for 
the target antigen expression to identify the concentration yielding the best 
signal-to-noise ratio. Following the surface staining, cells were washed with CSM, 
permeabilized with 4 °C methanol for 10 min on ice, washed twice with CSM, 
stained with an antibody master mix (prepared as above) against intracellular 
antigens in 50 μL (350 µL if barcoded) CSM for 30 min at room temperature, and 
washed once with CSM. To stain DNA, cells were incubated in PBS containing 
1:5,000 191Ir/193Ir MaxPar Nucleic Acid Intercalator (Fluidigm) and 1.6% PFA for 
1–3 d at 4 °C. Just before analysis, cells were washed once with CSM and twice with 
filtered double-distilled water, resuspended in normalization beads38 (EQ Beads, 
Fluidigm), filtered, and placed on ice. During event acquisition, cells were kept on 
ice and introduced into the CyTOF 2 (Fluidigm) using Super Sampler (Victorian 
Airship and Scientific Apparatus, Alamo, CA, USA). In addition to reporter metal 
isotopes listed in antibody panels (Supplementary Data 1–5), we recorded event 
length and channels 102Pd, 104Pd, 105Pd, 106Pd, 108Pd and 110Pd (barcoding); 140Ce, 
151Eu, 153Eu, 165Ho and 175Lu (bead normalization); 191Ir and 193Ir (DNA); 195Pt and 
196Pt (dead cells); and 138Ba (to help define single cells). In experiments quantifying 
IdU incorporation, we also recorded 127I.

In optimization experiments for CFSE detection, we also tested alternative 
permeabilization methods (no permeabilization, 0.2% saponin, CFSE staining 
after permeabilization); multiple anti-FITC antibody clones, concentrations and 
detection channels (clone FIT-22 conjugated to 172Yb, 0.25–16 µg/mL, Biolegend 
#408302; preconjugated clone FIT-22 on 144Nd, 0.5–8 tests, Fluidigm #3144006B; 
clone F4/1 conjugated to 172Yb, 0.25–16 µg/mL, Abcam #ab112511, Cambridge, UK; 
polyclonal antibody conjugated to 172Yb, 1–64 µg/mL, Southern Biotech #6400-01, 
Birmingham, AL); and extended anti-FITC incubation time (60 instead of 30 min) 
for all clones.

Singe-cell RNA-sequencing of T-cell division states. Cells were collected as 
described on day 3 of REP. The lot of PBMCs was previously analyzed to obtain 
the exact timing to observe all three division states in the same culture. Here, 
~10,000 live CFSE+ CD8+ T cells were prospectively isolated from division 0, 1 
or 2 and resuspended in 100 µL CCM. Cells were stored on ice and processed the 
same day on the Chromium platform (10X Genomics, Pleasanton, CA, USA) at 
the Stanford Functional Genomics Facility for droplet-based 3′ single-cell RNA-
sequencing per the manufacturer’s instructions, with a target of 3,000 cells per 
sample and a sequencing depth of > 50,000 reads per cell. The sample libraries 
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were combined and run on a single lane of the HiSeq 4000 platform (Illumina, 
San Diego, CA, USA).

Flow cytometry. When comparing mass cytometry and flow cytometry data, 
viability staining was also performed with Fixable Violet Dead Cell Stain 
(Thermo Fisher Scientific #L34955). Samples were then fixed as described above 
and separated into two parts for both flow and mass cytometry analysis just 
before storage at –80 °C. Surface staining was performed with anti-CD3ε–APC 
(clone UCHT1, Biolegend #300412) and anti-CD8α–APC–H7 (clone SK1, BD 
Biosciences #560273) antibodies. Cells were then resuspended in 250 µL CSM and 
analyzed on LSRII flow cytometer (BD Biosciences).

Data processing. Mass cytometry data were normalized38 and debarcoded37. Data 
were transformed using inverse hyperbolic sine (arcsinh) with a cofactor of 5 for 
DNA or protein expression7 or a cofactor of 20 for CFSE. Single cells were gated 
using Cytobank software (http://www.cytobank.org) on the basis of event length 
and 191Ir/193Ir (DNA) content as described by Bendall et al.7 Live non-apoptotic cells 
were gated based on 195Pt content (viability)36 and cleaved PARP. Hematopoietic cells 
were selected on the basis of CD45 expression. In initial experiments (antibody panel 
from Supplementary Data 1), CD45+ cells were further gated to select CD8+ T cells 
(CD3ε+ CD4– CD8α+ CD14– CD19– CD20–), myeloid dendritic cells (CD3ε– CD11c+ 
CD14– CD19– CD20– HLA-DR+) or monocytes (CD3ε– CD14+ CD19– CD20–). 
In experiments focused on differentiation of CD8+ T cells (antibody panels from 
Supplementary Data 2–5), we also excluded events that were CD33+ (myeloid), 
CD61+ (platelets), CD235+ (erythrocytes) or TCRγδ+ (γδ T cells). Where indicated, 
CFSE+ cells were selected on the basis of a CFSE– control from the same day. An 
example gating strategy is provided in Supplementary Fig. 3a,b.

Flow cytometry data were transformed using arcsinh with a cofactor of 150. 
CD8+ T cells were gated as single live CD3ε+ CD8α+ events.

Single-cell RNA-sequencing reads were aligned to the Genome Reference 
Consortium Human Build 38 (GRCh38), normalized for batch effects, and filtered 
for cell events using the Cell Ranger software (10X Genomics). A total of 4,060 cells 
were sequenced to an average of 52,040 post-normalization reads per cell capturing 
a median of 18,770 unique molecular identifier (UMI) counts per cell mapping to 
3,544 unique genes per cell. The cell–gene matrix was further processed using the 
Cell Ranger R Kit software (10X Genomics) as described by Zheng et al.39. Briefly, 
we first selected genes with at least 1 UMI count in any given cell (19,222 genes). 
UMI counts were then normalized to UMI sums for each cell and multiplied by 
a median UMI count across cells. Next, the data were transformed by taking the 
natural logarithm of the resulting data matrix. Where indicated, we selected the 
1,000 most variably expressed genes on the basis of normalized dispersion39.

Division ID assignment. Single-cell data for CFSE+ CD8+ T cells were processed 
using R (http://www.r-project.org) and Bioconductor (http://www.bioconductor.
org) software. To assign division IDs to cells in a given sample, we identified 
division peaks in log2-transformed CFSE ion count or fluorescence data using local 
regression. Centroid of division 0 peak and peak s.d. were estimated on the basis 
of those of nonproliferating control cells collected at the same time. Remaining 
division IDs were assigned to all cells where assignment confidence was ≥80% 
based on normal distribution modeling (or division –1 if not assigned). Top and 
bottom CFSE intensity cutoffs were set at 2 s.d. above division 0 and 2 s.d. below 
the maximum division, respectively. A modified FCS file with a “Division” column 
appended to original data was then exported for downstream analysis. Figure 1e 
shows a summary of the division ID assignment process.

Force-directed layout. To create force-directed graphs, we used Vortex software16, 
which implements the ForceAtlas2 engine15,16. Here, we extended Vortex to 
only allow edge connections either between subsequent time points (as in the 
FLOW-MAP algorithm17) or between subsequent divisions. Data were sampled 
as indicated before graph construction. Cell dissimilarity, a basis for repulsive 
forces, was calculated on the basis of angular (cosine) distance in the indicated 
dimensions. Edges, a basis for spring-like attractive forces, connected each cell in 
the original high-dimensional space to its ten nearest neighbors, which also had to 
be within consecutive (–1, 0, + 1) division states. See Fig. 3a for a summary  
of this process.

Diffusion maps. Diffusion maps embed single-cell data into diffusion components 
through a nonlinear transformation18,40. To perform the embedding, a matrix of 
diffusion distances is computed among all cells using the mathematics of heat 
diffusion and random-walk Markov chains. This matrix is then applied to calculate 
DPT, a metric based on the transition probability of a diffusion process. To embed 
data into diffusion components and to calculate DPT, we applied the Destiny40 
implementation of diffusion maps in R, which enables identification of up to two 
endpoints of a differentiation process. Diffusion maps were constructed using 
the angular distance metric and the same markers as in force-directed graphs. 
Diffusion components, DPT values, division IDs and time (days) were appended 

to the data, enabling visualization of these parameters in force-directed graphs 
using Vortex. Where indicated, DPT values for different treatment conditions were 
normalized to the 0–1 range for visualization purposes.

Statistical analysis. Statistical analysis was performed using R statistical software 
(http://www.r-project.org). To assess CFSE correlation between identical samples 
analyzed by flow and mass cytometry, we calculated Spearman’s rank correlation 
coefficient using log10-transformed medians for each division ID or using the 
percentage of cells assigned the same division ID. When no comparison to flow 
cytometry was made, we calculated Spearman’s rank correlation coefficient using 
arcsinh-transformed mass cytometry data. In each case, P-values were calculated 
using the correlation test. We tested normality assumption using the Shapiro–Wilk 
test. As the normality assumption was not met in statistical tests on single-cell data 
performed here, we applied the unpaired two-tailed Wilcoxon Mann–Whitney 
U test to assess statistical significance between two groups. When more than two 
groups were compared, we first used the Kruskal–Wallis H test (one-way analysis 
of variance on ranks) to check whether there were differences among treatment 
groups, followed by an unpaired two-tailed Wilcoxon Mann–Whitney test applied 
to each treatment pair and by Bonferroni correction for multiple hypothesis 
testing. To assess evidence for a decrease in mean phenotypic diversity with 
division across experiments, we used the lme441 implementation of linear mixed-
effects models in R.

We used lasso19,42,43 to identify markers associated with DPT. We allocated 80% 
of cells into a training set and 20% of cells into a test set using random sampling. 
To construct a lasso model, we used the glmnet42 implementation of lasso in 
R, including a built-in cross-validation function to tune the L1 regularization 
parameter λ. We then used all training data to construct the final model and 
applied that model to the test data to assess performance.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability
An extended version of the Java-based Vortex software16 and documentation can be 
accessed at https://github.com/nolanlab/vortex.

Data availability
Single-cell data can be accessed at the Stanford Digital Repository (https://purl.
stanford.edu/db057gb5997). Singe-cell RNA-sequencing data are also available on 
Gene Expression Omnibus (GEO accession code GSE119139).
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